Powertrain Blockset ${ }^{\text {mw }}$ Reference

MATLAB$^{\circ} \& S^{2}$ IMULINK ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Powertrain Blockset ${ }^{\text {TM }}$ Reference
© COPYRIGHT 2016-2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.
Revision History
October 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022

Online only
Online only
Online only Online only Online only Online only Online only Online only Online only Online only Online only Online only

New for Version 1.0 (Release 2016b+)
Revised for Version 1.1 (Release 2017a)
Revised for Version 1.2 (Release 2017b)
Revised for Version 1.3 (Release 2018a)
Revised for Version 1.4 (Release 2018b)
Revised for Version 1.5 (Release 2019a)
Revised for Version 1.6 (Release 2019b)
Revised for Version 1.7 (Release 2020a)
Revised for Version 1.8 (Release 2020b)
Revised for Version 1.9 (Release 2021a)
Revised for Version 1.10 (Release 2021b)
Revised for Version 1.11 (Release 2022a)

1

Vehicle Dynamics Blocks
2

Energy Storage Blocks
3

Propulsion Blocks
4

Electric Motor, Converters, Inverter Blocks
5

Scenario Creation Blocks
6

Transmission Blocks
7

Functions
8

Apps
9

Drivetrain Blocks

Rotational Inertia

Ideal mechanical rotational inertia

Description

The Rotational Inertia block implements an ideal mechanical rotational inertia.

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrR	Mechanical power from base shaft	$P_{\text {TR }}$	$P_{T R}=T_{R} \omega$
		PwrC	Mechanical power from follower shaft	$P_{\text {TC }}$	$P_{T C}=T_{C} \omega$
	PwrNotTrnsfrd Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrDampLoss	Power loss due to damping	P_{d}	$P_{d}=-b\|\omega\|^{2}$
	PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredShft	Rate change of stored internal torsional energy	P_{s}	$P_{s}=\omega \dot{\omega} J$

The equations use these variables.

T_{R}	Input torque
T_{C}	Output torque
ω	Driveshaft angular velocity
J	Rotational inertia
b	Rotational viscous damping
P_{d}	Power loss due to damping
P_{s}	Rate change of stored internal torsional energy

Ports

Input
RTrq - Input torque
scalar
Applied input driveshaft torque, T_{R}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, for Port Configuration, select Simulink.

CTrq - Output torque

scalar
Load driveshaft torque, T_{C}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, for Port Configuration, select Simulink.
R - Angular velocity and torque
two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, for Port Configuration, select Two-way connection.
Inertia - Input
scalar
Rotational inertia, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.
Dependencies
To create the Inertia port, select External inertia input.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Description	Variable	Units
Trq	R		Applied input driveshaft torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$
	C		Output driveshaft torque	T_{C}	$\mathrm{N} \cdot \mathrm{m}$
	Damp		Damping torque	$T_{d}=b \omega$	$\mathrm{N} \cdot \mathrm{m}$
Spd			Angular driveshaft speed	ω	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from base shaft	$P_{T R}$	W
		PwrC	Mechanical power from follower shaft	$P_{T C}$	W
	PwrNotTrnsf rd	PwrDampLos S	Power loss due to damping	P_{d}	W
	PwrStored	PwrStoredS hft	Rate change of stored internal torsional energy	P_{s}	W

Dependencies

To enable this port, select Output Info bus.

Spd - Driveshaft speed
 scalar

Angular driveshaft speed, ω, in rad/s.

Dependencies

To enable this port, for Port Configuration, select Simulink.

C - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration

Simulink (default)|Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus - Selection
off (default) | on
Select to create the Info output port.
External inertia input - Input rotational inertia
off (default) | on
Dependencies
To create the Inertia port, select External inertia input.

Parameters

Rotational inertia, J - Inertia
. 01 (default) | scalar
Rotational inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Dependencies
To enable this parameter, clear Input rotational inertia.
Torsional damping, b-Damping
. 001 (default) | scalar
Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial velocity, omega_o - Angular
0 (default) | scalar
Initial angular velocity, in rad/s.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{Tm}}$.

See Also

Split Torsional Compliance | Torsional Compliance
Introduced in R2017a

Split Torsional Compliance

Split torsional coupler

Description

The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the Coupling Configuration parameters:

- Shaft split - Single input shaft coupled to two output shafts
- Shaft merge - Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

Shaft Split

For the Shaft split configuration, the block implements this schematic and equations.

$$
\begin{aligned}
& T_{\text {in }}=-\left(\omega_{\text {in }}-\omega_{1 \text { out }}\right) b_{1}-\left(\omega_{\text {in }}-\omega_{2 \text { out }}\right) b_{2}-\theta_{1} k_{1}-\theta_{2} k_{2} \\
& T_{1 \text { out }}=\left(\omega_{\text {in }}-\omega_{1 \text { out }}\right) b_{1}+\theta_{1} k_{1} \\
& T_{2 \text { out }}=\left(\omega_{\text {in }}-\omega_{2 \text { out }}\right) b_{2}+\theta_{2} k_{2} \\
& \dot{\theta}_{1}=\left(\omega_{\text {in }}-\omega_{1 \text { out }}\right) \\
& \dot{\theta}_{2}=\left(\omega_{\text {in }}-\omega_{2 \text { out }}\right)
\end{aligned}
$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter. The equations use these variables.

$T_{\text {in }}$	Resulting applied input reaction torque
$\omega_{\text {in }}$	Input shaft rotational velocity
$T_{1 \text { out }}$	Resulting applied torque to first output shaft
$\omega_{1 \text { out }}$	First output shaft rotational velocity
$T_{2 \text { out }}$	Resulting applied torque to second output shaft
$\omega_{2 \text { out }}$	Second output shaft rotational velocity
θ_{1}, θ_{2}	First, second shaft rotation, respectively
b_{1}, b_{2}	First, second shaft viscous damping, respectively
k_{1}, k_{2}	First, second shaft torsional stiffness, respectively

Shaft Merge

For the Shaft merge configuration, the block implements this schematic and equations.

$$
\begin{aligned}
& T_{\text {out }}=\left(-\omega_{\text {out }}+\omega_{1 \text { in }}\right) b_{1}+\left(-\omega_{\text {out }}+\omega_{2 \text { in }}\right) b_{2}+\theta_{1} k_{1}+\theta_{2} k_{2} \\
& T_{1 \text { out }}=\left(\omega_{\text {out }}-\omega_{1 \text { in }}\right) b_{1}-\theta_{1} k_{1} \\
& T_{2 \text { out }}=\left(\omega_{\text {out }}-\omega_{2 \text { in }}\right) b_{2}-\theta_{2} k_{2} \\
& \dot{\theta}_{1}=\left(\omega_{1 \text { in }}-\omega_{\text {out }}\right) \\
& \dot{\theta}_{2}=\left(\omega_{2 \text { in }}-\omega_{\text {out }}\right)
\end{aligned}
$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

$T_{\text {out }}$	Resulting applied output torque
$\omega_{\text {out }}$	Output shaft rotational velocity
$T_{\text {lin }}$	Resulting reaction torque to first input shaft
$\omega_{1 \text { in }}$	First input shaft rotational velocity
$T_{2 \text { in }}$	Resulting reaction torque to second input shaft
$\omega_{2 \text { in }}$	Second input shaft rotational velocity
θ_{1}, θ_{2}	First, second shaft rotation, respectively
b_{1}, b_{2}	First, second shaft viscous damping, respectively
k_{1}, k_{2}	First, second shaft torsional stiffness, respectively

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrR	For the Shaft split configuration, mechanical power from input shaft	$P_{\text {TR }}$	$P_{T R}=-T_{R} \omega_{R}$
		PwrC1	For the Shaft split configuration, mechanical power from first output shaft	$P_{\text {TC1 }}$	$\begin{aligned} & P_{T C 1}= \\ & -T_{C 1} \omega_{C 1} \end{aligned}$
		PwrC2	For the Shaft split configuration, mechanical power from second output shaft	$P_{\text {TC2 }}$	$\begin{aligned} & P_{T C 2}= \\ & -T_{C 2} \omega_{C 2} \end{aligned}$
		PwrC	For the Shaft merge configuration, mechanical power from output shaft	$P_{\text {TC }}$	$P_{T C}=T_{C} \omega_{C}$

Bus Signal			Description	Variable	Equations
		PwrR1	For the Shaft merge configuration, mechanical power from first input shaft	$P_{\text {TR1 }}$	$\begin{gathered} P_{T R 1}= \\ T_{R 1} \omega_{R 1} \end{gathered}$
		PwrR2	For the Shaft merge configuration, mechanical power from second input shaft	$P_{\text {TR2 }}$	$\begin{gathered} P_{T R 2}= \\ T_{R 2} \omega_{R 2} \end{gathered}$
	PwrNotTrnsfrd Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrDampLoss	Mechanical damping loss	P_{d}	$\begin{aligned} & P_{d}=-\left(b_{1}\left\|\dot{\theta}_{1}\right\|^{2}\right. \\ & \left.+b_{2}\left\|\dot{\theta}_{2}\right\|^{2}\right) \end{aligned}$
	PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredShft	Rate change in spring energy	P_{s}	$\begin{aligned} & P_{s}=\left(k_{1} \theta_{1} \dot{\theta}_{1}\right. \\ & \left.+k_{2} \theta_{2} \dot{\theta}_{2}\right) \end{aligned}$

The equations use these variables.

T_{R}	Shaft R torque
T_{C}	Shaft C torque
ω_{R}	Shaft R angular velocity
ω_{C}	Shaft C angular velocity
θ	Coupled shaft rotation
k	Shaft torsional stiffness
b	Rotational viscous damping
P_{t}	Total mechanical power
P_{d}	Power loss due to damping
P_{s}	Rate change of stored spring energy

Ports

Input
RSpd - Input shaft speed
scalar
Input shaft rotational velocity, $\omega_{i n}$, in rad/s.
Dependencies
To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Spd - First output shaft speed
scalar
First output shaft rotational velocity, $\omega_{1 \text { out }}$, in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C2Spd - Second output shaft speed
scalar
Second output shaft rotational velocity, $\omega_{2 o u t}$, in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CSpd - Input speed
scalar
Output shaft rotational velocity, $\omega_{\text {out }}$, in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Spd - First input shaft speed
scalar
First input shaft rotational velocity, $\omega_{1 \text { in }}$, in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Spd - Second input shaft speed
scalar

Second input shaft rotational velocity, $\omega_{2 i n}$, in rad/s.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R - Input shaft angular velocity and torque
two-way connector port
Input shaft angular velocity, $\omega_{i n}$, in rad/s and torque, $T_{i n}$, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

R1 - First input shaft angular velocity and torque

two-way connector port
First input shaft angular velocity, $\omega_{1 i n}$, in rad/s and torque, $T_{1 i n}$, in $N \cdot \mathrm{~m}$.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

R2 - Second input shaft angular velocity and torque
two-way connector port
Second input shaft angular velocity, $\omega_{2 i n}$, in rad/s and torque, $T_{2 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Output

Info - Bus signal

bus
If you set Coupling Configuration to Shaft split, the Info bus contains these signals.

Signal			Description	Variable	Units
Trq	R		Input shaft torque	$T_{\text {in }}$	$\mathrm{N} \cdot \mathrm{m}$
	C1		First output shaft torque	$T_{1 \text { out }}$	$\mathrm{N} \cdot \mathrm{m}$
	C2		Second output shaft torque	$T_{\text {out }}$	$\mathrm{N} \cdot \mathrm{m}$
	Damp	C1	First output shaft damping torque	$b_{1} \omega_{1 \text { out }}$	$\mathrm{N} \cdot \mathrm{m}$
		C2	Second output shaft damping torque	$b_{2} \omega_{2 \text { out }}$	$\mathrm{N} \cdot \mathrm{m}$
	Spring	C1	First output shaft spring torque	$k_{1} \theta_{1}$	$\mathrm{N} \cdot \mathrm{m}$
		C2	Second output shaft spring torque	$k_{2} \theta_{2}$	$\mathrm{N} \cdot \mathrm{m}$
Spd	R		Input shaft angular velocity	$\omega_{\text {in }}$	rad/s
	C1		First output shaft angular velocity	$\omega_{1 \text { out }}$	rad/s
	C2		Second output shaft angular velocity	$\omega_{\text {2out }}$	$\mathrm{rad} / \mathrm{s}$
	deltadot1		Difference in input and first output shaft angular velocity	$\dot{\theta}_{1}$	rad/s
	deltadot2		Difference in input and second output shaft angular velocity	$\dot{\theta}_{2}$	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from input shaft	$P_{T R}$	W
		PwrC1	Mechanical power from first output shaft	$P_{\text {TC1 }}$	W
		PwrC2	Mechanical power from second output shaft	$P_{\text {TC2 }}$	W
	PwrNotTrnsf rd	PwrDampLo SS	Mechanical damping loss	P_{d}	W
	PwrStored	PwrStored Shft	Rate change of stored internal torsional energy	P_{s}	W

If you set Coupling Configuration to Shaft merge, the Info bus contains these signals.

Signal			Description	Variable
Units				
Trq	C	Output shaft torque	$T_{\text {out }}$	$\mathrm{N} \cdot \mathrm{m}$
	R1	First input shaft torque	$T_{1 i n}$	$\mathrm{~N} \cdot \mathrm{~m}$
	R2	Second input shaft torque	$T_{2 \text { in }}$	$\mathrm{N} \cdot \mathrm{m}$

Signal			Description	Variable	Units
	Damp	R1	First input shaft damping torque	$b_{1} \omega_{1 \text { in }}$	$\mathrm{N} \cdot \mathrm{m}$
		R2	Second in shaft damping torque	$b_{2} \omega_{2 i n}$	$\mathrm{N} \cdot \mathrm{m}$
	Spring	R1	First input shaft spring torque	$k_{1} \theta_{1}$	$\mathrm{N} \cdot \mathrm{m}$
		R2	Second in shaft spring torque	$k_{2} \theta_{2}$	$\mathrm{N} \cdot \mathrm{m}$
Spd	C		Output shaft angular velocity	$\omega_{\text {out }}$	rad/s
	R1		First input shaft angular velocity	$\omega_{1 i n}$	rad/s
	R2		Second input shaft angular velocity	$\omega_{2 i n}$	rad/s
	deltadot1		Difference in first input and output shaft angular velocity	$\dot{\theta}_{1}$	rad/s
	deltadot2		Difference in second input and output shaft angular velocity	$\dot{\theta}_{2}$	rad/s
PwrInfo	PwrTrnsfrd	PwrC	Mechanical power from output shaft	$P_{\text {TC }}$	W
		PwrR1	Mechanical power from first input shaft	$P_{\text {TR1 }}$	W
		PwrR2	Mechanical power from second input shaft	$P_{\text {TR2 }}$	W
	PwrNotTrnsf rd	PwrDampLo SS	Mechanical damping loss	P_{d}	W
	PwrStored	PwrStored Shft	Rate change of stored internal torsional energy	P_{s}	W

Dependencies

To enable this port, select Output Info bus.

RTrq - Input shaft torque
 scalar

Input shaft torque, $T_{i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Trq - First output shaft torque

scalar
First output shaft torque, $T_{1 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C2Trq - Second output shaft torque scalar

Second output shaft torque, $T_{2 o u t}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CTrq - Output shaft torque
scalar
Output shaft torque, $T_{\text {out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Trq - First input shaft torque

scalar
First input shaft torque, $T_{1 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Trq - Second input shaft torque scalar

Second input shaft torque, $T_{2 i n}$, in $N \cdot m$.

Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

C1 - First output shaft angular velocity and torque
two-way connector port
First output shaft angular velocity, $\omega_{1 \text { out }}$, in rad/s and torque, $T_{1 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C2 - Second output shaft angular velocity and torque
two-way connector port
Second output shaft angular velocity, $\omega_{2 o u t}$, in rad/s and torque, $T_{2 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C - Output shaft angular velocity and torque
two-way connector port
Output shaft angular velocity, $\omega_{\text {out }}$, in rad/s and torque, $T_{\text {out }}$ in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

Parameters

Block Options

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.

Coupling Configuration - Specify configuration
 Shaft split (default)|Shaft merge

Specify the coupling type.
Output Info bus - Selection
off (default) | on
Select to create the Info output port.

Coupling 1

Torsional stiffness, k1 - Stiffness
5e4 (default) | scalar
Rotational inertia, k_{1}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Torsional damping, b1 - Damping
1e2 (default) | scalar
Torsional damping, b_{1}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Damping cutoff frequency, omegal_c - Frequency 3000 (default) | scalar

Damping cutoff frequency, in rad/s.

Coupling 2

Torsional stiffness, k2 - Stiffness
5e4 (default) | scalar
Rotational inertia, k_{2}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Torsional damping, b2 - Damping
1e2 (default) | scalar
Torsional damping, b_{2}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Damping cutoff frequency, omega2_c - Frequency 3000 (default) | scalar

Damping cutoff frequency, in rad/s.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Rotational Inertia | Torsional Compliance
Introduced in R2017b

Torsional Compliance

Parallel spring-damper
Library:
Powertrain Blockset / Drivetrain / Couplings
Vehicle Dynamics Blockset / Powertrain / Drivetrain /
Couplings

Description

The Torsional Compliance block implements a parallel spring-damper to couple two rotating driveshafts. The block uses the driveshaft angular velocities, torsional stiffness, and torsional damping to determine the torques.
$T_{R}=-\left(\omega_{R}-\omega_{C}\right) b-\theta k$
$T_{C}=\left(\omega_{R}-\omega_{C}\right) b+\theta k$
$\dot{\theta}=\left(\omega_{R}-\omega_{C}\right)$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Variable	Equations	
PwrInfo	PwrTrnsfrd - Power transferred between blocks -Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrR	Mechanical power from driveshaft R	$P_{T R}$	$P_{T R}=$ $T_{R} \omega_{R}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred	PwrDampLoss	Mechanical power from driveshaft C	Mechanical damping loss Positive signals indicate an input -Negative signals indicate a loss	P_{d}

Bus Signal	Description	Variable	Equations		
	PwrStored - Stored energy rate of change	PwrStoredShft	Rate change in spring energy Positive signals indicate an increase Negative signals indicate a decrease	P_{S}	$P_{S}=-\theta k \dot{\theta}$

The equations use these variables.

T_{R}	Driveshaft R torque
T_{C}	Driveshaft C torque
ω_{R}	Driveshaft R angular velocity
ω_{C}	Driveshaft C angular velocity
θ	Coupled driveshaft rotation
k	Driveshaft torsional stiffness
b	Rotational viscous damping
P_{d}	Power loss due to damping
P_{s}	Rate change of stored spring energy

Ports

Input

RSpd - Driveshaft R angular velocity

scalar
Input driveshaft angular velocity, in rad/s.

Dependencies

To enable this port, for Port Configuration, select Simulink.

CSpd - Driveshaft C angular velocity

scalar
Output driveshaft angular velocity, in rad/s.

Dependencies

To enable this port, for Port Configuration, select Simulink.

R - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, for Port Configuration, select Two-way connection.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Description	Variable	Units
Trq	R		Input driveshaft torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$
	C		Output driveshaft torque	T_{C}	$\mathrm{N} \cdot \mathrm{m}$
	Damp		Damping torque	$T_{s}=b \dot{\theta}$	$\mathrm{N} \cdot \mathrm{m}$
	Spring		Spring torque	$T_{d}=k \theta$	$\mathrm{N} \cdot \mathrm{m}$
Spd	R		Input driveshaft angular velocity	ω_{R}	$\mathrm{rad} / \mathrm{s}$
	C		Output driveshaft angular velocity	ω_{C}	rad/s
	deltadot		Difference in input and output driveshaft angular velocity	$\dot{\theta}$	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from driveshaft R	$P_{T R}$	W
		PwrC	Mechanical power from driveshaft C	$P_{\text {TC }}$	W
	PwrNotTrnsf rd	PwrDampLos S	Power loss due to damping	P_{d}	W
	PwrStored	PwrStoredS hft	Rate change of stored internal kinetic energy	P_{s}	W

Dependencies

To enable this port, select Output Info bus.

RTrq - Driveshaft R torque

scalar

Input drive shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, for Port Configuration, select Simulink.

CTrq- Driveshaft C torque

scalar
Applied output driveshaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this port, for Port Configuration, select Simulink.

C - Angular velocity and torque
 two-way connector port

Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To enable this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration

Simulink (default)|Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus - Selection
off (default) | on
Select to create the Info output port.
Torsional stiffness, k - Inertia
le4 (default) | scalar
Torsional stiffness, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Torsional damping, b-Damping
1e2 (default) | scalar
Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial deflection, theta_o - Angular
0 (default) | scalar
Initial deflection, in rad.
Initial velocity difference, domega_o - Angular 0 (default) | scalar

Initial velocity difference, in rad/s.
Damping cut-off frequency, omega_c - Frequency 3000 (default) | scalar

Damping cut-off frequency, in rad/s.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Rotational Inertia | Split Torsional Compliance

Introduced in R2017a

Limited Slip Differential

Limited differential as a planetary bevel gear

Description

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier
- Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- Slip speed-dependent torque data
- Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: - \quad Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts - \quad Efficiency speed breakpoints, omega_bpts - \quad Efficiency temperature breakpoints, Temp_bpts For the air temperature, you can either:
	- Select Input temperature to create an input port. - Set a Ambient temperature, Tamb parameter value. To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrDriveshft	Mechanical power from driveshaft	$\eta T_{d} \omega_{d}$
		PwrAxl1	Mechanical power from axle 1	$\eta T_{1} \omega_{1}$
		PwrAxl2	Mechanical power from axle 2	$\eta T_{2} \omega_{2}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrMechLoss	Total power loss	$\begin{aligned} & \dot{W}_{\text {loss }}=-\left(P_{t}+P_{d}+1\right. \\ & P_{t}=\eta\left(T_{d} \omega_{d}+T_{1} \omega_{1}+T\right. \end{aligned}$
		PwrDampLoss	Power loss due to damping	$\begin{aligned} & P_{d}=-\left(b_{1}\left\|\omega_{1}\right\|\right. \\ & \left.+b_{2}\left\|\omega_{2}\right\|+b_{d}\left\|\omega_{d}\right\|\right) \end{aligned}$
		PwrCplngLoss	Power loss due to clutch	$P_{C}=T_{C}\|\bar{\omega}\|$
	PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredShft	Rate change of stored internal energy	$\begin{aligned} & P_{s}=-\left(\omega_{1} \dot{\omega}_{1} J_{1}\right. \\ & \left.+\omega_{2} \dot{\omega}_{2} J_{2}+\omega_{d} \dot{\omega}_{d} J_{d}\right) \end{aligned}$

Dynamics

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$
Left Axle	$\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$
Right Axle	$\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{1}=\frac{N}{2} T_{i}-\frac{1}{2} T_{C} \\
& \eta T_{2}=\frac{N}{2} T_{i}+\frac{1}{2} T_{C}
\end{aligned}
$$

$$
\omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
$$

The equations use these variables.

N	Carrier-to-driveshaft gear ratio
J_{d}	Rotational inertia of the crown gear assembly
b_{d}	Crown gear linear viscous damping
ω_{d}	Driveshaft angular speed
ω	Slip speed
J_{1}	Axle 1 rotational inertia
b_{1}	Axle 1 linear viscous damping
ω_{1}	Axle 1 speed
J_{2}	Axle 2 rotational inertia
b_{2}	Axle 2 linear viscous damping
ω_{2}	Axle 2 angular speed
η	Efficiency
T_{d}	Driveshaft torque
T_{1}	Axle 1 torque
T_{2}	Axle 2 torque
T_{i}	Axle internal resistance torque
$T_{i 1}$	Axle 1 internal resistance torque
$T_{i 2}$	Axle 2 internal resistance torque
μ	Coefficient of friction
$R_{e f f}$	Effective clutch radius
R_{o}	Annular disk outer radius
R_{i}	Annular disk inner radius
F_{c}	Clutch force
T_{c}	Clutch torque
μ	Coefficient of friction

Table blocks in the Limited Slip Differential have these parameter settings:

- Interpolation method - Linear
- Extrapolation method - Clip

Ideal Clutch Coupling

The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$
T_{C}=F_{C} N \mu(|\sigma|) R_{e f f} \tanh (4|\sigma|)
$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$
R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i}{ }^{3}\right)}{\left.3\left(R_{0} 2-R_{i}\right)^{2}\right)}
$$

The angular velocities of the axles determine the slip speed.

$$
\varpi=\omega_{1}-\omega_{2}
$$

Slip Speed Coupling

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$
\omega=\omega_{1}-\omega_{2}
$$

Input Torque Coupling

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{i 1}=\eta T_{i 2}=\frac{N}{2} T_{i} \\
& \omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

Ports

Inputs

DriveshftTrq - Torque

scalar
Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.
Axl1Trq - Torque
scalar
Axle 1 torque, T_{1}, in $\mathrm{N} \cdot \mathrm{m}$.
Axl2Trq - Torque
scalar
Axle 2 torque, T_{2}, in $\mathrm{N} \cdot \mathrm{m}$.

Temp - Temperature

scalar
Temperature, in K.

Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal			Description	Units
Driveshft	DriveshftTrq		Driveshaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd		Driveshaft speed	rad/s
Axl1	AxliTrq		Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd		Axle 1 speed	rad/s
Axl2	Axl2Trq		Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd		Axle 2 speed	rad/s
Cplng	CplngTrq		Torque coupling	$\mathrm{N} \cdot \mathrm{m}$
	CplngSlipSpd		Slip speed	rad/s
PwrInfo	PwrTrnsfrd	PwrDrivesh ft	Mechanical power from driveshaft	W
		PwrAxl1	Mechanical power from axle 1	W
		PwrAxl2	Mechanical power from axle 2	W
	PwrNotTrns frd	PwrMechLos s	Total power loss	W
		PwrDampLos S	Power loss due to damping	W
		$\begin{aligned} & \text { PwrCplngLo } \\ & \text { ss } \end{aligned}$	Power loss due to clutch	W
	PwrStoredS hft	PwrStoredS hft	Rate change of stored internal energy	W

DriveshftSpd - Angular speed

scalar

Driveshaft angular speed, ω_{d}, in rad/s.

Axl1Spd - Angular speed

scalar
Axle 1 angular speed, ω_{1}, in rad/s.

Axl2Spd - Angular speed

scalar
Axle 2 angular speed, ω_{2}, in rad/s.

Parameters

Block Options

Efficiency factors - Specify configuration

Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:
	- \quad Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts - Efficiency speed breakpoints, omega_bpts
	For the air temperature, you can either:
• \quad Select Input temperature to create an input port.	
- Set a Ambient temperature, Tamb parameter value.	
To select the interpolation method, use the Interpolation method	
parameter. For more information, see "Interpolation Methods".	

Interpolation method - Method

Flat|Nearest|Linear point-slope|Linear Lagrange|Cubic spline
For more information, see "Interpolation Methods".

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input temperature - Create input port

off (default) |on
Select to create input port Temp for the temperature.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Open Differential

Crown wheel (ring gear) located - Specify crown wheel connection

To the left of center-line (default)|To the right of center-line

Specify the crown wheel connection to the driveshaft.
Carrier to drive shaft ratio, NC/ND - Ratio
4 (default) | scalar
Carrier-to-driveshaft gear ratio, N.
Carrier inertia, Jd - Inertia
. 1 (default) | scalar
Rotational inertia of the crown gear assembly, J_{d}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the driveshaft inertia.
Carrier damping, bd - Damping
1e-3 (default)| scalar
Crown gear linear viscous damping, b_{d}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 inertia, Jw1 - Inertia
. 1 (default) | scalar
Axle 1 rotational inertia, J_{1}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping
1e-3 (default)| scalar
Axle 1 linear viscous damping, b_{1}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 2 inertia, Jw2 - Inertia
. 1 (default) | scalar
Axle 2 rotational inertia, J_{2}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping
1e-3 (default) | scalar
Axle 2 linear viscous damping, b_{2}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 initial velocity, omegaw1o - Angular velocity
0 (default) | scalar
Axle 1 initial velocity, $\omega_{o 1}$, in rad/s.
Axle 2 initial velocity, omegaw2o - Angular velocity
0 (default) | scalar
Axle 2 initial velocity, $\omega_{o 2}$, in rad/s.
Constant efficiency factor, eta - Efficiency
1 (default) | scalar
Constant efficiency, η.

Dependencies

To enable this parameter, set Efficiency factors to Constant.

Efficiency lookup table, eta_tbl - Lookup table
 M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- M input torques
- N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints

[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector
Vector of input torque, breakpoints for efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints
[52.4 78.5 105 131157183209262314419 524] (default)|l-by-N vector
Vector of speed, breakpoints for efficiency, in rad/s.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints

[290 358] (default) | 1-by-L vector
Vector of ambient temperature breakpoints for efficiency, in K.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb - Ambient temperature 297.15 (default) | scalar

Ambient air temperature, $T_{\text {air }}$, in K.
Dependencies
To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.

Slip Coupling

Coupling type - Torque coupling
Pre-loaded ideal clutch (default)|Slip speed dependent torque data|Input torque dependent torque data

Specify the type of torque coupling.

Number of disks, Ndisks - Torque coupling

4 (default) | scalar
Number of disks.

Dependencies

To enable the ideal clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Effective radius, Reff - Radius

. 20 (default) | scalar
The effective radius, $R_{e f f}$, used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$
R_{e f f}=\frac{2\left(R_{o} 3-R_{i} 3\right)}{3\left(R_{o}^{2}-R_{i}^{2}\right)}
$$

The equation uses these variables.
$R_{0} \quad$ Annular disk outer radius
$R_{i} \quad$ Annular disk inner radius

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

```
Nominal preload force, Fc - Force
500 (default) | scalar
```

Nominal preload force, in N.

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Friction coefficient vector, muc - Friction
[.16 0.13 0.115 0.11 0.105 0.1025 0.10125] (default)|vector
Friction coefficient vector.

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Slip speed vector, dw - Angular velocity
[0 10 20406080 100] (default)|vector
Slip speed vector, in rad/s.

Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

```
Torque - slip speed vector, Tdw - Torque
[-100, -90, -50, -5, 0, 5, 50, 90, 100] (default)|vector
```

Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Slip speed vector, dwT - Angular velocity
[-200, -175, -100, - 50, 0, 50, 100, 175, 200] (default)|vector
Slip speed vector, in rad/s.

Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

```
Torque - input torque vector, TTin - Torque
[-200 -175-100 - 50 0 50 100 175 200] (default)|vector
```

Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

Input torque vector, Tin - Torque
[-200 -175-100 - 50050100175 200] (default)|vector
Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

```
Coupling time constant, tauC - Constant
.01 (default) | scalar
```

Coupling time constant, in s.

References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. Transportation Systems. Vol. 17, pp: 427-436.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Open Differential
Introduced in R2017a

Open Differential

Differential as a planetary bevel gear

Powertrain Blockset / Drivetrain / Final Drive Unit Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final Drive Unit

Description

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission driveshaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.

Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: - \quad Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts - \quad Efficiency speed breakpoints, omega_bpts - \quad Efficiency temperature breakpoints, Temp_bpts For the air temperature, you can either:
	- Select Input temperature to create an input port. - Set a Ambient temperature, Tamb parameter value. To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

Power Accounting

For the power accounting, the block implements these equations.

Dynamics

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$
Left Axle	$\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$
Right Axle	$\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{i 1}=\eta T_{i 2}=\frac{N}{2} T_{i} \\
& \omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

The equations use these variables.

N	Carrier-to-driveshaft gear ratio
J_{d}	Rotational inertia of the crown gear assembly
b_{d}	Crown gear linear viscous damping
ω_{d}	Driveshaft angular speed
η	Differential efficiency
J_{1}	Axle 1 rotational inertia
b_{1}	Axle 1 linear viscous damping
ω_{1}	Axle 1 speed
J_{2}	Axle 2 rotational inertia
b_{2}	Axle 2 linear viscous damping
ω_{2}	Axle 2 angular speed
T_{d}	Driveshaft torque
T_{1}	Axle 1 torque
T_{2}	Axle 2 torque
T_{i}	Driveshaft internal resistance torque
$T_{i 1}$	Axle 1 internal resistance torque
$T_{i 2}$	Axle 2 internal resistance torque

Ports

Inputs
DriveshftTrq - Torque
scalar
Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.
Axl1Trq - Torque
scalar
Axle 1 torque, T_{1}, in $\mathrm{N} \cdot \mathrm{m}$.
Axl2Trq - Torque
scalar
Axle 2 torque, T_{2}, in $\mathrm{N} \cdot \mathrm{m}$.
Temp - Temperature
scalar
Temperature, in K.

Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal			Description	Units
Driveshft	DriveshftTrq		Driveshaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd		Driveshaft speed	rad/s
Axl1	Axl1Trq		Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd		Axle 1 speed	rad/s
Axl2	Axl2Trq		Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd		Axle 2 speed	rad/s
PwrInfo	PwrTrnsfrd	PwrDriveshft	Mechanical power from driveshaft	W
		PwrAxl1	Mechanical power from axle 1	W
		PwrAxl2	Mechanical power from axle 2	W
	PwrTrnsfrd	PwrMechLoss	Total power loss	W
		PwrDampLoss	Power loss due to damping	W
	PwrStored	PwrStoredShft	Rate change of stored internal energy	W

DriveshftSpd - Angular speed

scalar

Driveshaft angular speed, ω_{d}, in rad/s.

Axl1Spd - Angular speed

scalar

Axle 1 angular speed, ω_{1}, in rad/s.
Axl2Spd - Angular speed
scalar
Axle 2 angular speed, ω_{2}, in rad/s.

Parameters

Block Options

Efficiency factors - Specify configuration

Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: - \quad Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts
	- Efficiency speed breakpoints, omega_bpts - Efficiency temperature breakpoints, Temp_bpts
	For the air temperature, you can either:
	- Select Input temperature to create an input port. - Set a Ambient temperature, Tamb parameter value. To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

Interpolation method - Method

Flat|Nearest|Linear point-slope|Linear Lagrange|Cubic spline
For more information, see "Interpolation Methods".

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input temperature - Create input port
off (default) | on
Select to create input port Temp for the temperature.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Crown wheel (ring gear) located - Specify crown wheel connection
To the left of center-line (default)|To the right of center-line
Specify the crown wheel connection to the driveshaft.

Carrier to drive shaft ratio, Ndiff - Ratio
4 (default) | scalar
Carrier-to-driveshaft gear ratio, N, dimensionless.
Carrier inertia, Jd - Inertia
. 1 (default) | scalar
Rotational inertia of the crown gear assembly, J_{d}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the driveshaft inertia.
Carrier damping, bd - Damping
1e-3 (default) | scalar
Crown gear linear viscous damping, b_{d}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 inertia, Jw1 - Inertia
. 1 (default) | scalar
Axle 1 rotational inertia, J_{1}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping
1e-3 (default) | scalar
Axle 1 linear viscous damping, b_{1}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 2 inertia, Jw2 - Inertia
. 1 (default)| scalar
Axle 2 rotational inertia, J_{2}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping
1e-3 (default) | scalar
Axle 2 linear viscous damping, b_{2}, in $N \cdot m \cdot s / r a d$.
Axle 1 initial velocity, omegaw 10 - Angular velocity
0 (default) | scalar
Axle 1 initial velocity, ω_{01}, in rad/s.
Axle 2 initial velocity, omegaw $2 o$ - Angular velocity
0 (default) | scalar
Axle 2 initial velocity, $\omega_{o 2}$, in rad/s.
Efficiency
Constant efficiency factor, eta - Efficiency
1 (default) | scalar
Constant efficiency, η.

Dependencies

To enable this parameter, set Efficiency factors to Constant.

Efficiency lookup table, eta_tbl - Lookup table
 M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- M input torques
- N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints

[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector
Vector of input torque, breakpoints for efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints
[52.4 78.5 105 131157183209262314419 524] (default)|l-by-N vector
Vector of speed, breakpoints for efficiency, in rad/s.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints

 [290 358] (default) | 1-by-L vectorVector of ambient temperature breakpoints for efficiency, in K.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb - Ambient temperature 297.15 (default) | scalar

Ambient air temperature, $T_{\text {air }}$, in K .
Dependencies
To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Limited Slip Differential
Introduced in R2017a

Longitudinal Wheel

Longitudinal wheel with disc, drum, or mapped brake

Description

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.
Longitudinal Wheel - Mapped Brake	Mapped	Lookup table that is a function of the wheel speed and applied brake pressure.

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in Tire and Vehicle Dynamics.
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method - Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle Dynamics. The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$
T_{i}=T_{a}-T_{b}+T_{d}
$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$
T_{d}(s)=\frac{1}{\frac{|\omega| R_{e}}{L_{e}} s+1}\left(F_{\chi} R_{e}+M_{y}\right)
$$

To calculate the rolling resistance torque, you can specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	Block sets rolling resistance, M_{y}, to zero.
Pressure and velocity	Block uses the method in SAE Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity. Specifically, $M_{y}=R_{e}\left\{a+b\left\|V_{x}\right\|+c V_{\chi}^{2}\right\}\left\{F_{z} \beta p_{i}^{\alpha}\right\} \tanh \left(4 V_{\chi}\right)$
ISO 28580	Block uses the method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method - Single point test and correlation of measurement results. The method accounts for normal load, parasitic loss, and thermal corrections from test conditions. Specifically, $M_{y}=R_{e}\left(\frac{F_{z} C_{r}}{1+K_{t}\left(T_{a m b}-T_{\text {meas }}\right)}-F_{p l}\right) \tanh (\omega)$
Magic Formula	Block calculates the rolling resistance, M_{y}, using the Magic Formula equations from 4.E70 in Tire and Vehicle Dynamics. The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	For the rolling resistance, M_{y}, the block uses a lookup table that is a function of the normal force and spin axis longitudinal velocity.

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

If	Lock-Up Condition	Friction Model	Dynamic Model
$\omega \neq 0$ or $T_{S}<\left\|T_{i}+T_{f}-\omega b\right\|$	Unlocked	$T_{f}=T_{k}$ where, $T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(-\omega_{d}\right)\right]$ $T_{S}=F_{c} R_{e f f} \mu_{S}$ $R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{3\left(R_{o} 2-R_{i} 2\right)}$	
$\omega=0$ and $T_{S} \geq\left\|T_{i}+T_{f}-\omega b\right\|$	Locked	$T_{f}=T_{S}$	

The equations use these variables.

ω	Wheel angular velocity
a	Velocity-independent force component
b	Linear velocity force component
c	Quadratic velocity force component
L_{e}	Tire relaxation length
J	Moment of inertia

M_{y}	Rolling resistance torque
T_{a}	Applied axle torque
T_{b}	Braking torque
T_{d}	Combined tire torque
T_{f}	Frictional torque
T_{i}	Net input torque
T_{k}	Kinetic frictional torque
T_{o}	Net output torque
T_{s}	Static frictional torque
F_{c}	Applied clutch force
F_{x}	Longitudinal force developed by the tire road interface due to slip
$R_{e f f}$	Effective clutch radius
R_{o}	Annular disk outer radius
R_{i}	Annular disk inner radius
R_{e}	Effective tire radius while under load and for a given pressure
V_{x}	Longitudinal axle velocity
F_{z}	Vehicle normal force
C_{r}	Rolling resistance constant
$T_{a m b}$	Ambient temperature
$T_{\text {meas }}$	Measured temperature for rolling resistance constant
$F_{p l}$	Parasitic force loss
K_{t}	Thermal correction factor
α	Tire pressure exponent
β	Normal force exponent
p_{i}	Tire pressure
μ_{s}	Coefficient of static friction
μ_{k}	Coefficient of kinetic friction
Brakes	
Disc	

If you specify the Brake Type parameter Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.

A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$
\begin{aligned}
& T= \begin{cases}\frac{\mu P_{\pi B} B_{a} R_{m} N_{\text {pads }}}{4} & \text { when } N \neq 0 \\
\frac{\mu_{\text {static } P \Pi B_{a} 2 R_{m} N_{\text {pads }}}^{4}}{2} & \text { when } N=0\end{cases} \\
& R m=\frac{\text { Ro }+ \text { Ri }}{2}
\end{aligned}
$$

The equations use these variables.

T	Brake torque
P	Applied brake pressure
N	Wheel speed
$N_{\text {pads }}$	Number of brake pads in disc brake assembly
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
μ	Disc pad-rotor coefficient of kinetic friction
B_{a}	Brake actuator bore diameter
R_{m}	Mean radius of brake pad force application on brake rotor
R_{o}	Outer radius of brake pad

$R_{i} \quad$ Inner radius of brake pad

Drum

If you specify the Brake Type parameter Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in Fundamentals of Machine Elements.

$$
\begin{aligned}
& T_{\text {rshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}^{2}}{2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+a r\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T_{\text {lshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}{ }^{2}}{-2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T= \begin{cases}T_{\text {rshoe }}+T_{\text {lshoe }} & \text { when } N \neq 0 \\
\left(T_{\text {rshoe }}+T_{\text {lshoe }}\right) \frac{\mu_{\text {static }}}{\mu} & \text { when } N=0\end{cases}
\end{aligned}
$$

The equations use these variables.

T	Brake torque
P	Applied brake pressure
N	Wheel speed

$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
μ	Disc pad-rotor coefficient of kinetic friction
$T_{\text {rshoe }}$	Right shoe brake torque
$T_{\text {lshoe }}$	Left shoe brake torque
a	Distance from drum center to shoe hinge pin center
c	Distance from shoe hinge pin center to brake actuator connection on brake shoe
r	Drum internal radius
B_{a}	Brake actuator bore diameter
Θ_{1}	Angle from shoe hinge pin center to start of brake pad material on shoe
Θ_{2}	Angle from shoe hinge pin center to end of brake pad material on shoe

Mapped

If you specify the Brake Type parameter Mapped, the block uses a lookup table to determine the brake torque.

$$
T=\left\{\begin{array}{lr}
f_{\text {brake }}(P, N) & \text { when } N \neq 0 \\
\left(\frac{\mu_{\text {static }}}{\mu}\right) f_{\text {brake }}(P, N) & \text { when } N=0
\end{array}\right.
$$

The equations use these variables.

T	Brake torque
$f_{\text {brake }}(P, N)$	Brake torque lookup table
P	Applied brake pressure
N	Wheel speed
$\mu_{\text {static }}$	Friction coefficient of drum pad-face interface under static conditions
μ	Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $\quad T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- P is applied brake pressure, in bar.
- N is wheel speed, in rpm.

Longitudinal Force

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state tire characteristic function $F_{\mathrm{x}}=f\left(\kappa, F_{z}\right)$, the longitudinal force F_{x} on the tire, based on:

- Vertical load F_{z}
- Wheel slip κ

The Magic Formula model uses these variables.

Ω	Wheel angular velocity
r_{w}	Wheel radius
V_{x}	Wheel hub longitudinal velocity
$r_{\mathrm{w}} \Omega$	Tire tread longitudinal velocity
$V_{\mathrm{sx}}=r_{\mathrm{w}} \Omega-V_{\mathrm{x}}$	Wheel slip velocity
$K=V_{\mathrm{sx}} /\left\|V_{\mathrm{x}}\right\|$	Wheel slip
$F_{\mathrm{z}}, F_{\mathrm{z} 0}$	Vertical load and nominal vertical load on tire
$F_{\mathrm{x}}=f\left(\kappa, F_{\mathrm{z}}\right)$	Longitudinal force exerted on the tire at the contact point. Also a characteristic function f of the tire.

Magic Formula Constant Value

If you set Longitudinal Force to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients (B, C, D, E), or stiffness, shape, peak, and curvature:

$$
F_{\mathrm{x}}=f\left(\kappa, F_{\mathrm{z}}\right)=F_{\mathrm{z}} D \sin \left(C \tan ^{-1}\left[\left\{B K-E\left[B K-\tan ^{-1}\left(B_{K}\right)\right]\right\}\right]\right)
$$

The slope of f at $k=0$ is $B C D \cdot F_{z}$.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Magic Formula Pure Longitudinal Slip

If you set Longitudinal Force to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of Tire and Vehicle Dynamics, including 4.E9 through 4.E18:

$$
F_{\mathrm{x} 0}=D_{\mathrm{x}} \sin \left(C_{\mathrm{x}} \tan ^{-1}\left[\left\{B_{\mathrm{x}} K_{\mathrm{x}}-E_{\mathrm{x}}\left[B_{\mathrm{x}} K_{\mathrm{x}}-\tan ^{-1}\left(B_{\mathrm{x}} K_{\mathrm{x}}\right)\right]\right\}\right]\right)+S_{\mathrm{Vx}}
$$

where:

$$
\begin{aligned}
& K_{\mathrm{X}}=K+S_{H x} \\
& C_{\mathrm{x}}=p_{C x 1} \lambda_{C x} \\
& D_{\mathrm{x}}=\mu_{\mathrm{x}} F_{\mathrm{z}} S_{1} \\
& \mu_{\mathrm{x}}=\left(p_{D \times 1}+p_{D \times 2} d f_{\mathrm{z}}\right)\left(1+p_{p \times 3} d p_{i}+p_{p \times 4} d p_{i}^{2}\right)\left(1-p_{D \times 3} \gamma^{2}\right) \lambda^{*}{ }_{\mu x} \\
& E_{\mathrm{x}}=\left(p_{E x 1}+p_{E \times 2} d f_{\mathrm{z}}+p_{E x 3} d f_{\mathrm{z}}{ }^{2}\right)\left[1-p_{E x 4} \operatorname{sgn}\left(K_{\mathrm{x}}\right)\right] \lambda_{E x} \\
& K_{\mathrm{xK}}=F_{\mathrm{z}}\left(p_{K \times 1}+p_{K \times 2} d f_{\mathrm{z}}\right) \exp \left(\mathrm{p}_{\mathrm{Kx} 3} d f_{\mathrm{z}}\right)\left(1+p_{p \times 1} d p_{i}+p_{p \times 2} d p_{i} 2\right) \\
& B_{\mathrm{x}}=K_{\mathrm{xK}} /\left(C_{\mathrm{x}} D_{\mathrm{x}}+\varepsilon_{\mathrm{x}}\right) \\
& S_{H x}=p_{H \times 1}+p_{H \times 2} d f_{\mathrm{z}} \\
& S_{V x}=F_{z} \cdot\left(p_{V x 1}+p_{V x 2} d f_{z}\right) \lambda_{V x} \lambda^{\prime}{ }_{\mu x} S_{1}
\end{aligned}
$$

$S_{H x}$ and $S_{V x}$ represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve. μ_{x} is the longitudinal load-dependent friction coefficient. ε_{χ} is a small number inserted to prevent division by zero as F_{z} approaches zero.

Vertical Dynamics

If you select no vertical degrees-of-freedom by setting Vertical Motion to None, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set Vertical Motion to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$
\operatorname{Fztire}\left(z, \dot{z}, P_{\text {tire }}\right)=F_{z k}\left(z, P_{\text {tire }}\right)+F_{z b}\left(\dot{z}, P_{\text {tire }}\right)
$$

The block determines the vertical response using this differential equation.

$$
\ddot{z} m=F z t i r e-F_{z}-m g
$$

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$
\begin{aligned}
& \ddot{z}=\dot{z}=m=0 \\
& \text { Fztire }=m g
\end{aligned}
$$

The block uses the wheel-fixed frame to resolve the vertical forces.

The equations use these variables.
Fztire \quad Tire normal force along the wheel-fixed z-axis
m
$F_{z k}$
$F_{z b}$
F_{z}
$P_{\text {Tire }}$
z, \dot{z}, \ddot{z}

Axle mass
Tire normal force due to wheel stiffness along the wheel-fixed z-axis
Tire normal force due to wheel damping along the wheel-fixed z-axis
Suspension or vehicle normal force along the wheel-fixed z-axis
Tire pressure
Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed z axis

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal		Description	Equations	
PwrInf o	PwrTrnsfrd Power transferred between blocks	PwrRoad	Tractive power applied from the axle	$P_{\text {road }}=F_{X} V_{X}$
	PwrAxlTrq	External torque applied by the axle to the wheel	$P_{T}=T \omega$	

Bus Signal		Description	Equations
- Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrFz	Vertical force applied to the wheel by the vehicle or suspension	$P_{F z}=F_{z} \dot{z}$
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrSlip	Tractive power loss	$\begin{aligned} & P_{K}=F_{x} V_{x}+(\\ & \left.-F_{c p} R_{e}+M_{y}\right) \omega \end{aligned}$
	PwrMyRoll	Rolling resistance power	$P_{M y}=M_{y} \omega$
	PwrMyBrk	Braking power	$P_{b r k}=M_{b r k} \omega$
	PwrMyb	Rolling viscous damping loss	$P_{b}=-b \omega^{2}$
	PwrFzDamp	Vertical damping power	$P_{F z b}=F_{z b} \dot{z}$
PwrStored Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredzdot	Rate of change of vertical kinetic energy	$P_{\dot{z}}=m \ddot{z} \dot{z}$
	PwrStoredq	Rate of change of rotational kinetic energy	$P_{\omega}=I_{y y} \dot{\omega} \omega$
	PwrStoredFsFzSp rng	Rate of change of stored sidewall potential energy	$P_{F z k}=F_{z k} \dot{z}_{\chi}$
	PwrStoredGrvty	Rate of change of gravitational potential energy	$P_{g}=-m g \dot{Z}$

The equations use these variables.

ω	Wheel angular velocity
b	Linear velocity force component
F_{x}	Longitudinal force developed by the tire road interface due to slip
$F_{c p}$	Tire slip force at contact patch
F_{z}	Vehicle normal force
$F_{z b}$	Tire normal force due to wheel damping
$F_{z k}$	Tire normal force due to wheel stiffness
$I_{y y}$	Wheel rotational inertia
$M_{b r k}$	Braking moment
M_{y}	Rolling resistance torque
R_{e}	Effective tire radius while under load and for a given pressure
T	Axle torque applied on wheel
V_{x}	Longitudinal axle velocity

$z, \dot{z}, \ddot{z} \quad$ Tire displacement, velocity, and acceleration, respectively
$\omega \quad$ Wheel angular velocity
$\dot{Z} \quad$ Vehicle vertical velocity along the vehicle-fixed z-axis

Ports

Input
BrkPrs - Brake pressure
scalar
Brake pressure, in Pa.

Dependencies

To enable this port, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

AxlTrq - Axle torque
scalar
Axle torque, T_{a}, about wheel spin axis, in $\mathrm{N} \cdot \mathrm{m}$.

```
Vx - Velocity
scalar
```

Axle longitudinal velocity along vehicle(body)-fixed x-axis, in m / s.

Fz - Normal force

scalar

```
Absolute value of suspension or vehicle normal force along body-fixed \(z\)-axis, in N .
Gnd - Ground displacement
scalar
```

Ground displacement, Grndz , along negative wheel-fixed z-axis, in m .

Dependencies

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the Vertical pane, select Input ground displacement.
lam_mux - Friction scaling factor
scalar
Longitudinal friction scaling factor, dimensionless.

Dependencies

To enable this port, select Input friction scale factor.

TirePrs - Tire pressure
 scalar

Tire pressure, in Pa.

Dependencies

To enable this port:

- Set one of these parameters:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, select Input tire pressure.

Tamb - Ambient temperature
scalar
Ambient temperature, $T_{a m b}$, in K.

Dependencies

To enable this port:
1 Set Rolling Resistance to ISO 28580.
2 On the Rolling Resistance pane, select to Input ambient temperature.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Units
AxlTrq	Axle torque about body-fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
Omega	Wheel angular velocity about body-fixed y-axis	$\mathrm{rad} / \mathrm{s}$
Omegadot	Wheel angular acceleration about body-fixed y-axis	$\mathrm{rad} / \mathrm{s}$ ^2
Fx	Longitudinal vehicle force along body-fixed x-axis	N
Fz	Vertical vehicle force along body-fixed z-axis	N
Fzb	Tire normal force due to wheel damping along the wheel-fixed z-axis	N
Fzk	Tire normal force due to wheel stiffness along the wheel-fixed z-axis	N
My	Rolling resistance torque about body-fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
Myb	Rolling resistance torque due to damping about body-fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
Kappa	Slip ratio	m
Vx	Vehicle longitudinal velocity along body-fixed x-axis	m / s
	Wheel effective radius along wheel-fixed z-axis	m

Signal			Description	Units
BrkTrq			Brake torque about body-fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
BrkPrs			Brake pressure	Pa
Z			Wheel vertical deflection along wheel-fixed z-axis	m
$z d o t$			Wheel vertical velocity along wheel-fixed z-axis	m/s
zddot			Wheel vertical acceleration along wheel-fixed z-axis	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
Gndz			Ground displacement along negative of wheel-fixed z-axis (positive input produces wheel lift)	m
GndFz			Vertical wheel force on ground along negative of wheel-fixed z-axis	N
TirePrs			Tire pressure	Pa
Fpatch			Tractive power applied from the axle	
PwrInfo	PwrTrnsfrd	PwrRoad	External torque applied by the axle to the wheel	W
		PwrAxlTrq	Vertical force applied to the wheel by the vehicle or suspension	W
		PwrFz	Tractive power loss	W
	PwrNotTrnsfrd	PwrSlip	Rolling resistance power	W
		PwrMyRoll	Braking power	W
		PwrMyBrk	Rolling viscous damping loss	W
		PwrMyb	Vertical damping power	W
		PwrFzDamp	Rate of change of vertical kinetic energy	W
	PwrStored	PwrStoredzdot	Rate of change of rotational kinetic energy	W
		PwrStoredq	Rate of change of stored sidewall potential energy	W
		PwrStoredFsFzSprng	Rate of change of gravitational potential energy	W
		PwrStoredGrvty	Tractive power applied from the axle	W

Fx - Longitudinal axle force

scalar

Longitudinal force acting on axle, along body-fixed x-axis, in N. Positive force acts to move the vehicle forward.

Omega - Wheel angular velocity
 scalar

Wheel angular velocity, about body-fixed y-axis, in rad/s.

z - Wheel vertical deflection
 scalar

Wheel vertical deflection along wheel-fixed z-axis, in m .

Dependencies

To enable this port, set Vertical Motion to Mapped stiffness and damping.
zdot - Wheel vertical velocity
scalar
Wheel vertical velocity along wheel-fixed z-axis, in m / s.

Dependencies

To enable this port, set Vertical Motion to Mapped stiffness and damping.

Parameters

Block Options

Longitudinal Force - Select type

Magic Formula constant value (default)|Magic Formula pure longitudinal slip| Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.
Magic Formula pure longitudinal slip	Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in Tire and Vehicle Dynamics.
Mapped force	Lookup table that is a function of the normal force and wheel slip ratio.

Dependencies

Selecting	Enables These Parameters
Magic Formula constant value	Pure longitudinal peak factor, Dx
	Pure longitudinal shape factor, $\mathbf{C x}$
	Pure longitudinal stiffness factor, Bx
	Pure longitudinal curvature factor, Ex

Selecting	Enables These Parameters
Magic Formula pure longitudinal slip	Cfx shape factor, PCX1
	Longitudinal friction at nominal normal load, PDX1
	Frictional variation with load, PDX2
	Frictional variation with camber, PDX3
	Longitudinal curvature at nominal normal load, PEX1
	Variation of curvature factor with load, PEX2
	Variation of curvature factor with square of load, PEX3
	Longitudinal curvature factor with slip, PEX4
	Longitudinal slip stiffness at nominal normal load, PKX1
	Variation of slip stiffness with load, PKX2
	Slip stiffness exponent factor, PKX3
	Horizontal shift in slip ratio at nominal normal load, PHX1
	Variation of horizontal slip ratio with load, PHX2
	Vertical shift in load at nominal normal load, PVX1
	Variation of vertical shift with load, PVX2
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1
	Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2
	Linear variation of peak longitudinal friction with tire pressure, PPX3
	Quadratic variation of peak longitudinal friction with tire pressure, PPX4
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1
	Slip speed decay function scaling factor, lam_muV
	Brake slip stiffness scaling factor, lam_Kxkappa
	Longitudinal shape scaling factor, lam_Cx
	Longitudinal curvature scaling factor, lam_Ex

Selecting	Enables These Parameters
	Longitudinal horizontal shift scaling factor, lam_Hx
	Longitudinal vertical shift scaling factor, lam_Vx
Mapped force	Slip ratio breakpoints, kappaFx
	Normal force breakpoints, FzFx
Longitudinal force map, FxMap	

Rolling Resistance - Select type

None (default)|Pressure and velocity|IS0 28580|Magic Formula|Mapped torque
To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method - Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle Dynamics. The magic formula is an empirical equation based on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin axis longitudinal velocity.

Dependencies

Selecting	Parameters
Pressure and velocity	Velocity independent force coefficient, aMy
	Linear velocity force component, bMy
	Quadratic velocity force component, cMy
	Tire pressure exponent, alphaMy
	Normal force exponent, betaMy

Selecting	Parameters
ISO 28580	Parasitic losses force, Fpl
	Rolling resistance constant, Cr
	Thermal correction factor, Kt
	Measured temperature, Tmeas
	Parasitic losses force, Fpl
	Ambient temperature, Tamb
Magic Formula	Rolling resistance torque coefficient, QSY
	Longitudinal force rolling resistance coefficient, QSY2
	Linear rotational speed rolling resistance coefficient,
QSY3	
	Quartic rotational speed rolling resistance coefficient,
QSY4	
	Camber squared rolling resistance torque, QSY5
	Load based camber squared rolling resistance torque,
QSY6	
	Normal load rolling resistance coefficient, QSY7
Pressure load rolling resistance coefficient, QSY8	
Rolling resistance scaling factor, lam_My	
Mapped torque	Spin axis velocity breakpoints, VxMy
Normal force breakpoints, FzMy	
Rolling resistance torque map, MyMap	

Brake Type - Select type
 None | Disc | Drum | Mapped

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No Brake	None	None
Longitudinal Wheel - Disc Brake	Disc	Brake that converts the brake cylinder pressure into a braking force.
Longitudinal Wheel - Drum Brake	Drum	Simplex drum brake that converts the applied force and brake geometry into a net braking torque.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - Mapped Brake	Mapped	Lookup table that is a function of the wheel speed and applied brake pressure.

Vertical Motion - Select type

None (default)|Mapped stiffness and damping
To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

Selecting	Enables These Parameters	Creates These Output Ports
Mapped stiffness and damping	Wheel and unsprung mass, m	z
	Initial deflection, zo	
	Initial velocity, zdoto	
Gravitational acceleration, g		
Vertical deflection breakpoints, zFz		
Pressure breakpoints, pFz		
Force due to deflection, Fzz		
Vertical velocity breakpoints, zdotFz		
	Force due to velocity, Fzzdot	
	Ground displacement, Gndz	
	Input ground displacement	

Longitudinal scaling factor, lam_x - Friction scaling factor
 1 (default)

Longitudinal friction scaling factor, dimensionless.

Dependencies

To enable this parameter, clear Input friction scale factor.

Input friction scale factor - Selection
 0ff (default)

Create input port for longitudinal friction scaling factor.

Dependencies

Selecting this parameter:

- Creates input port lam_mux.
- Disables parameter Longitudinal scaling factor, lam_x.

Wheel Dynamics
Axle viscous damping coefficient, br - Damping
0.001 (default) | scalar

Axle viscous damping coefficient, $b r$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Wheel inertia, Iyy - Inertia
0.8 (default) | scalar

Wheel inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Wheel initial angular velocity, omegao - Wheel speed 0 (default) | scalar

Initial angular velocity of wheel, along body-fixed y-axis, in rad/s.
Relaxation length, Lrel - Relaxation length
0.5 (default) | scalar

Wheel relaxation length, in m.
Loaded radius, Re - Loaded radius
0.3 (default) | scalar

Loaded wheel radius, Re , in m .

Unloaded radius, UNLOADED_RADIUS - Unloaded radius
0.4 (default) | scalar

Unloaded wheel radius, in m.

Dependencies

To create this parameter, set Rolling Resistance to Pressure and velocity or Magic Formula.
Nominal longitudinal speed, LONGVL - Speed
16 (default) | scalar
Nominal longitudinal speed along body-fixed x-axis, in m / s.

Dependencies

To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.

Nominal camber angle, gamma - Camber

0 (default) | scalar
Nominal camber angle, in rad.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal pressure, NOMPRES - Pressure

220000 (default) | scalar
Nominal pressure, in Pa.

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Pressure, press - Pressure
220000 (default) | scalar
Pressure, in Pa.

Dependencies

To enable this parameter:

- Set one of these:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, clear Input tire pressure.

Longitudinal

Magic Formula Constant Value

Pure longitudinal peak factor, Dx - Factor

1 (default) | scalar
Pure longitudinal peak factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal shape factor, Cx - Factor

1.65 (default) | scalar

Pure longitudinal shape factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal stiffness factor, Bx - Factor
10 (default) | scalar
Pure longitudinal stiffness factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies
To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal curvature factor, Ex - Factor
0.01 (default) | scalar

Pure longitudinal curvature factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Magic Formula Pure Longitudinal Slip
Cfx shape factor, PCX1 - Factor
1.6 (default) | scalar

Cfx shape factor, PCX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal friction at nominal normal load, PDX1 - Factor
1 (default) | scalar
Longitudinal friction at nominal normal load, PDX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with load, PDX2 - Factor -0.08 (default) | scalar

Frictional variation with load, PDX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with camber, PDX3 - Factor 0 (default) | scalar

Frictional variation with camber, PDX3, 1/rad^2.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal curvature at nominal normal load, PEX1 - Factor 0.112 (default) | scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with load, PEX2 - Factor 0.313 (default) | scalar

Variation of curvature factor with load, PEX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with square of load, PEX3 - Factor 0 (default) | scalar

Variation of curvature factor with square of load, PEX3, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal curvature factor with slip, PEX4 - Factor

0.0016 (default) | scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal slip stiffness at nominal normal load, PKX1 - Factor

21.7 (default) | scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of slip stiffness with load, PKX2 - Factor
13.77 (default) | scalar

Variation of slip stiffness with load, PKX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Slip stiffness exponent factor, PKX3 - Factor
-0.412 (default) | scalar
Slip stiffness exponent factor, PKX3, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Horizontal shift in slip ratio at nominal normal load, PHX1 - Factor 2.1585E-4 (default) | scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of horizontal slip ratio with load, PHX2 - Factor
0.00115 (default) | scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Vertical shift in load at nominal normal load, PVX1 - Factor
1.5973E-5 (default) | scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of vertical shift with load, PVX2 - Factor
1.043E-4 (default) | scalar

Variation of vertical shift with load, PVX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

```
Linear variation of longitudinal slip stiffness with tire pressure, PPX1 -
Factor
-0.3489 (default) | scalar
```

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 Factor
0.382 (default) | scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Linear variation of peak longitudinal friction with tire pressure, PPX3 Factor
-0. 09634 (default) | scalar
Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of peak longitudinal friction with tire pressure, PPX4 Factor
0.06447 (default) | scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Slip speed decay function scaling factor, lam_muV - Factor 1 (default) | scalar

Slip speed decay function scaling factor, lam_muV, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Brake slip stiffness scaling factor, lam_Kxkappa - Factor
1 (default) | scalar
Brake slip stiffness scaling factor, lam_Kxkappa, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal shape scaling factor, lam_Cx - Factor
1 (default) | scalar
Longitudinal shape scaling factor, lam_Cx, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal curvature scaling factor, lam_Ex - Factor

0 (default) | scalar
Longitudinal curvature scaling factor, lam_Ex, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal horizontal shift scaling factor, lam_Hx - Factor
1 (default) | scalar
Longitudinal horizontal shift scaling factor, lam_Hx, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal vertical shift scaling factor, lam_Vx - Factor
1 (default) | scalar
Longitudinal vertical shift scaling factor, lam_Vx, dimensionless.

Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Mapped Force
Slip ratio breakpoints, kappaFx - Breakpoints
vector
Slip ratio breakpoints, dimensionless.
Dependencies
To create this parameter, select the Longitudinal Force parameter Mapped force.
Normal force breakpoints, FzFx - Breakpoints
vector
Normal force breakpoints, N .

Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.

Longitudinal force map, FxMap - Lookup table array

Longitudinal force versus slip ratio and normal force, N .

Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.

Rolling Resistance

Pressure and Velocity
Velocity independent force coefficient, aMy - Force coefficient
8e-4 (default) | scalar
Velocity-independent force coefficient, a, in s / m.

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.
Linear velocity force component, bMy - Force component
. 001 (default) | scalar
Linear velocity force component, b, in s / m.

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.
Quadratic velocity force component, cMy - Force component
1.6e-4 (default) | scalar

Quadratic velocity force component, c, in $\mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2$.

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.
Tire pressure exponent, alphaMy - Pressure exponent
-0.003 (default) | scalar
Tire pressure exponent, α, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Normal force exponent, betaMy - Force exponent
 0.97 (default) | scalar

Normal force exponent, β, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.
ISO 28580
Parasitic losses force, Fpl - Force loss
10 (default) | scalar
Parasitic force loss, $F_{p l}$, in N.

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

Rolling resistance constant, Cr - Constant
le-3 (default) | scalar
Rolling resistance constant, C_{r}, in N / kN. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

Thermal correction factor, Kt - Correction factor
 . 008 (default) | scalar

Thermal correction factor, K_{t}, in $1 /$ degC.

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

Measured temperature, Tmeas - Temperature
 298.15 (default) | scalar

Measured temperature, $T_{\text {meas }}$, in K.

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

Ambient temperature, Tamb - Temperature
 298.15 (default) | scalar

Measured temperature, $T_{a m b}$, in K.

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

Input ambient temperature - Selection

off (default) | on
Select to create input port Tamb.

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

Magic Formula

Rolling resistance torque coefficient, QSY1 - Torque coefficient 0.007 (default) | scalar

Rolling resistance torque coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.

Longitudinal force rolling resistance coefficient, QSY2 - Force resistance coefficient
 0 (default) | scalar

Longitudinal force rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Linear rotational speed rolling resistance coefficient, QSY3 - Linear speed coefficient
0.0015 (default) | scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Quartic rotational speed rolling resistance coefficient, QSY4 - Quartic speed coefficient
8.5e-05 (default) | scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Camber squared rolling resistance torque, QSY5 - Camber resistance torque 0 (default) | scalar

Camber squared rolling resistance torque, in $1 / \operatorname{rad}^{\wedge} 2$.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Load based camber squared rolling resistance torque, QSY6 - Load resistance torque
0 (default) | scalar
Load based camber squared rolling resistance torque, in $1 / \mathrm{rad}$ ^2.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Normal load rolling resistance coefficient, QSY7 - Normal resistance coefficient 0.9 (default) | scalar

Normal load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.

Pressure load rolling resistance coefficient, QSY8 - Pressure resistance coefficient
-0.4 (default) | scalar
Pressure load rolling resistance coefficient, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Rolling resistance scaling factor, lam_My - Scale
1 (default) | scalar
Rolling resistance scaling factor, dimensionless.

Dependencies

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Mapped
Spin axis velocity breakpoints, VxMy - Breakpoints
-20:1:20 (default)| vector
Spin axis velocity breakpoints, in m / s.

Dependencies

To create this parameter, select the Rolling Resistance parameter Mapped torque.

Normal force breakpoints, FzMy - Breakpoints

0:200:1e4 (default)|vector
Normal force breakpoints, in N.

Dependencies

To create this parameter, select the Rolling Resistance parameter Mapped torque.

Rolling resistance torque map, MyMap - Lookup table

 arrayRolling resistance torque versus axle speed and normal force, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this parameter, select the Rolling Resistance parameter Mapped torque.

Brake

Static friction coefficient, mu_static - Static friction

. 3 (default)| scalar

Static friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

Kinetic friction coefficient, mu_kinetic - Kinetic friction
. 2 (default) | scalar
Kinematic friction coefficient, dimensionless.

Dependencies

To enable this parameter, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

Disc
Disc brake actuator bore, disc_abore - Bore distance . 05 (default) | scalar

Disc brake actuator bore, in m.

Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.
Brake pad mean radius, Rm - Radius
. 177 (default) | scalar
Brake pad mean radius, in m.

Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

```
Number of brake pads, num_pads - Count
2 (default)| scalar
```

Number of brake pads.

Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

Drum

Drum brake actuator bore, disc_abore - Bore distance
0.0508 (default) | scalar

Drum brake actuator bore, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Shoe pin to drum center distance, drum_a - Distance 0.123 (default) | scalar

Shoe pin to drum center distance, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin center to force application point distance, drum_c - Distance 0.212 (default) | scalar

Shoe pin center to force application point distance, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Drum internal radius, drum_r - Radius

0.15 (default) | scalar

Drum internal radius, in m.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to pad start angle, drum_thetal - Angle
0 (default) | scalar
Shoe pin to pad start angle, in deg.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to pad end angle, drum_theta2 - Angle
126 (default) | scalar
Shoe pin to pad end angle, in deg.

Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Mapped

Brake actuator pressure breakpoints, brake_p_bpt - Breakpoints vector

Brake actuator pressure breakpoints, in bar.

Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.
Wheel speed breakpoints, brake_n_bpt - Breakpoints vector

Wheel speed breakpoints, in rpm.

Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

Brake torque map, f_brake_t - Lookup table array

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $\quad P$ is applied brake pressure, in bar.
- N is wheel speed, in rpm.

Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

Vertical

Nominal normal force, FNOMIN - Force
 2000 (default) | scalar

Nominal rated wheel load along wheel-fixed z-axis, in N .

Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal rated load scaling factor, lam_Fzo - Factor

1 (default) | scalar
Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

Dependencies

To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.

Wheel and unsprung mass, m - Mass
10 (default) | scalar
Wheel and unsprung mass, in kg. Used in the vertical motion calculations.
Dependencies
To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial deflection, zo - Deflection
0 (default) | scalar
Initial axle displacement along wheel-fixed z-axis, in m .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial velocity, zdoto - Velocity
0 (default) | scalar
Initial axle velocity along wheel-fixed z-axis, in m .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Gravitational acceleration, g - Gravity
9.81 (default) | scalar

Gravitational acceleration, in m/s^2.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Ground displacement, Gndz - Displacement
0 (default) | scalar
Ground displacement, Grndz, along negative wheel-fixed z-axis, in m .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Mapped Stiffness and Damping

Vertical deflection breakpoints, zFz - Breakpoints
[0.01 .1] (default)|vector
Vector of sidewall deflection breakpoints corresponding to the force table, in m .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Pressure breakpoints, pFz - Breakpoints

[10000 1000000] (default) | vector
Vector of pressure data points corresponding to the force table, in Pa.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to deflection, Fzz - Force
[0 le3 le4; 0 le4 le5] (default)|vector
Force due to sidewall deflection and pressure along wheel-fixed z-axis, in N .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Vertical velocity breakpoints, zdotFz - Breakpoints

[-20 0 20] (default)|scalar
Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to velocity, Fzzdot - Force
[500 0 -500;250 0-250] (default)|array
Force due to sidewall velocity and pressure along wheel-fixed z-axis, in N .

Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

Simulation Setup

Minimum normal force, FZMIN - Force
0 (default) | scalar
Minimum normal force, in N. Used with all vertical force calculations.
Maximum normal force, FZMAX - Force
10000 (default) | scalar
Maximum normal force, in N. Used with all vertical force calculations.
Max allowable slip ratio (absolute), kappamax - Ratio
1.5 (default) | scalar

Maximum allowable absolute slip ratio, dimensionless.
Velocity tolerance used to handle low velocity situations, VXLOW - Tolerance 1 (default) | scalar

Velocity tolerance used to handle low-velocity situations, in m / s.
Minimum ambient temperature, TMIN - Tmin
0 (default) | scalar
Minimum ambient temperature, $T_{\text {MIN }}$, in K .

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.
Maximum ambient temperature, TMAX - Tmax
400 (default) | scalar
Maximum ambient temperature, $T_{M A X}$, in K .

Dependencies

To create this parameter, select the Rolling Resistance parameter ISO 28580.

References

[1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
[2] Pacejka, H. B. Tire and Vehicle Dynamics. 3rd ed. Oxford, United Kingdom: SAE and ButterworthHeinemann, 2012.
[3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.
[4] Shigley, Joseph E., and Larry Mitchel. Mechanical Engineering Design. 4th ed. New York, NY: McGraw Hill, 1983.
[5] ISO 28580:2018. Passenger car, truck and bus tyre rolling resistance measurement method -Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2018.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Drive Cycle Source | Longitudinal Driver
Introduced in R2017a

Planetary Gear

Ideal planetary gear with sun, ring, and carrier
Library:
Powertrain Blockset / Drivetrain / Couplings

Description

The Planetary Gear block implements an ideal planetary gear coupling consisting of a rigidly coupled sun, ring, and carrier gears. The block calculates the dynamic response to the sun, carrier, and ring input torques.

In fuel economy and powertrain studies, you can use the Planetary Gear block as a power-split device by coupling it to common driveline elements such as transmissions, engines, clutches, and differentials.

These equations of motion represent the dynamic response of the planetary gear.

$$
\begin{aligned}
& \dot{\omega}_{s} J_{s}=\dot{\omega}_{s} b_{s}+T_{s}+T_{p s} \\
& \dot{\omega}_{c} J_{c}=\dot{\omega}_{c} b_{c}+T_{c}+T_{p c} \\
& \dot{\omega}_{s} J_{r}=\dot{\omega}_{r} b_{r}+T_{r}+T_{p r} \\
& \dot{\omega}_{p} J_{p}=\omega_{p} b_{p}+T_{r p}+T_{s p}+T_{c p}
\end{aligned}
$$

To reduce the equations of motion, the block uses these kinematic and geometric constraints.

$$
\begin{aligned}
& \omega_{c} r_{c}=r_{s} \omega_{s}+r_{p} \omega_{p} \\
& \omega_{r} r_{r}=r_{c} \omega_{c}+r_{p} \omega_{p} \\
& r_{c}=r_{s}+r_{p} \\
& r_{r}=r_{c}+r_{p}
\end{aligned}
$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf 0	PwrTrnsfrd Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block PwrNotTrnsfr d - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss PwrStored Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrSun	Sun gear applied power	$\omega_{s} T_{s}$
		PwrCarr	Carrier gear applied power	$\omega_{C} T_{C}$
		PwrRing	Ring gear applied power	$\omega_{r} T_{r}$
		PwrDampLoss	Mechanical damping loss	$-\left(b_{s} \omega_{s}^{2}+b_{c} \omega_{c}^{2}+b_{r} \omega_{r}^{2}+b_{p} \omega_{p}^{2}\right)$
		PwrStoredPlntry	Rate change in rotational kinetic energy	$\begin{aligned} & \dot{\omega}_{s} \omega_{s} J_{S}+\quad \dot{\omega}_{c} \omega_{c} J_{c}+\dot{\omega}_{r} \omega_{r} J_{r}+ \\ & \dot{\omega}_{p} \omega_{p} J_{p} \end{aligned}$

The equations use these variables.
$\omega_{c}, \omega_{p}, \omega_{r}, \omega_{s}$ Carrier, planet, ring, and sun gear angular speed
$r_{c}, r_{p}, r_{r}, r_{s} \quad$ Carrier, planet, ring, and sun gear angular radius
$J_{c}, J_{p}, J_{r}, J_{s} \quad$ Carrier, planet, ring, and sun gear inertia
$b_{c}, b_{p}, b_{r}, b_{s} \quad$ Carrier, planet, ring, and sun gear damping
$T_{c}, T_{p}, T_{r}, T_{s} \quad$ Applied carrier, planet, ring, and sun gear torque
$T_{p s} \quad$ Torque applied from planet gear on sun gear
$T_{p c} \quad$ Torque applied from planet gear on carrier gear
$T_{p r} \quad$ Torque applied from planet gear on ring gear
$T_{r p} \quad$ Torque applied from ring gear on planet gear
$T_{s p} \quad$ Torque applied from sun gear on planet gear
$T_{c p} \quad$ Torque applied from carrier gear on planet gear

Ports

Input
SunTrq - Sun gear applied torque
scalar
Sun gear input torque, T_{s}, in $N \cdot m$.
Dependencies
To create this port, for Port Configuration, select Simulink.
CarrTrq - Carrier gear applied torque
scalar
Carrier gear input torque, T_{c}, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, for Port Configuration, select Simulink.
RingTrq - Ring gear applied torque
scalar
Ring gear applied torque, T_{r}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

C - Carrier gear angular speed and torque

two-way connector port
Carrier gear angular speed, ω_{c}, in rad/s. Carrier gear applied torque, T_{c}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Description	Units
Sun	SunTrq		Sun gear applied torque	$\mathrm{N} \cdot \mathrm{m}$
	SunSpd		Sun gear angular speed	rad/s
Carr	CarrTrq		Carrier gear applied torque	$\mathrm{N} \cdot \mathrm{m}$
	CarrSpd		Carrier gear angular speed	rad/s
Ring	RingTrq		Ring gear applied torque	$\mathrm{N} \cdot \mathrm{m}$
PwrInfo	PwrTrnsfrd	PwrSun	Sun gear applied power	W
		PwrCarr	Carrier gear applied power	W
		PwrRing	Ring gear applied power	W
	PwrNotTrns frd	PwrDampLoss	Mechanical damping loss	W
	PwrStored	PwrStoredPlntr y	Rate change in rotational kinetic energy	W

SunSpd - Sun gear angular speed
 scalar

Sun gear angular speed, ω_{s}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

CarrSpd - Carrier gear angular speed

scalar
Carrier gear angular speed, ω_{c}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

RingSpd - Ring gear angular speed
 scalar

Ring gear angular speed, ω_{r}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

S - Sun gear angular speed and torque

two-way connector port
Sun gear angular speed, ω_{s}, in rad/s. Sun gear applied torque, T_{s}, in $N \cdot m$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

R - Ring gear angular speed and torque

two-way connector port

Ring gear angular speed, ω_{r}, in rad/s. Ring gear applied torque, T_{r}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration

Simulink (default)|Two-way connection
Specify the port configuration.
Dependencies
Specifying Simulink creates these ports:

- SunTrq
- CarrTra
- RingTrq
- SunSpd
- CarrSpd
- RingSpd

Specifying Two-way connection creates these ports:

- C
- S
- R

Sun to planet ratio, Nsp - Ratio
30/23 (default) | scalar
Sun-to-planet gear ratio, dimensionless.
Sun to ring ratio, Nsr - Ratio
30/78 (default) | scalar
Sun-to-ring gear ratio, dimensionless.
Sun inertia, Js - Inertia
. 003 (default)| scalar
Sun gear inertia, J_{s}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Planet inertia, Jp - Inertia . 001 (default) | scalar

Planet gear inertia, J_{p}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Ring inertia, Jr - Inertia
. 01 (default) | scalar

Ring gear inertia, J_{r}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

Carrier inertia, Jc - Inertia

. 002 (default) | scalar

Carrier gear inertia, J_{c}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Sun viscous damping, bs - Damping . 001 (default) | scalar

Sun gear viscous damping, $b_{s}, N \cdot m \cdot s / r a d$.
Ring viscous damping, br - Damping . 001 (default) | scalar

Ring gear viscous damping, $b_{r}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.
Planet viscous damping, bp - Damping . 001 (default) | scalar
Planet gear viscous damping, $b_{p}, N \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.
Carrier viscous damping, bc - Damping . 001 (default) | scalar

Carrier gear viscous damping, $b_{c}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.
Initial sun velocity, ws_o - Angular speed
0 (default) | scalar
Initial sun gear angular speed, in rad/s.
Initial carrier velocity, wc_o - Angular speed
0 (default) | scalar
Initial carrier gear angular speed, in rad/s.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also
Disc Clutch | Gearbox | Rotational Inertia | Torque Converter | Torsional Compliance
Introduced in R2017a

Gearbox

Ideal rotational gearbox
Library:
Powertrain Blockset / Drivetrain / Couplings

Description

The Gearbox block implements an ideal rotational gearbox. The block uses the gear inertias and damping to calculate the velocity response to the base and follower gear pair input torques.

In fuel economy and powertrain efficiency studies, you can use the Gearbox block to model ideal gear coupling and the power transfer between common driveline elements such as transmissions, engines, clutches, and differentials.

The Gearbox block uses these equations to approximate the transmission dynamics.

$$
\begin{aligned}
& \dot{\omega}_{B} J_{B}=\omega_{B} b_{B}+\eta N T_{F} \\
& \dot{\omega}_{F} J_{F}=\omega_{F} b_{F}+\eta T_{F}
\end{aligned}
$$

This constraint equation reduces the system to a one DOF system.

$$
\omega_{B}=N \omega_{F}
$$

To express the ideal torque transfer, the block uses this relationship.

$$
\eta N T_{B}+T_{F}=0
$$

Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.

Setting	Implementation
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: - Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts - Efficiency speed breakpoints, omega_bpts - Efficiency temperature breakpoints, Temp_bpts For the air temperature, you can either: - Select Input temperature to create an input port. - Set a Ambient temperature, Tamb parameter value. To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equatio
PwrInf 0	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrBase	Mechanical power from base shaft	$P_{\text {Base }}$	$\begin{gathered} P_{\text {Base }}= \\ \eta T_{B} \omega_{B} \end{gathered}$
		PwrFlwr	Mechanical power from follower shaft	$P_{\text {Flwr }}$	$\begin{gathered} P_{F l w r}= \\ \eta T_{F} \omega_{F} \end{gathered}$
		PwrMechLoss	Total power loss	$P_{n g}$	$\begin{aligned} & P_{n g}= \\ & P_{t}=\eta T_{B} \omega \end{aligned}$
		PwrDampLoss	Power loss due to damping	P_{d}	$\begin{aligned} & P_{d}= \\ & - \\ & \left(b_{F}\left\|\omega_{F}\right\|^{2}\right. \\ & +b_{B}\left\|\omega_{B}\right\|^{2} \\ &) \end{aligned}$
		PwrStoredSh ft	Rate change of stored internal kinetic energy	P_{s}	$\begin{aligned} & P_{s}= \\ & \left(\omega_{B} \dot{\omega}_{B} J_{B}\right. \\ & +\omega_{F} \dot{\omega}_{F} J_{F} \\ &) \end{aligned}$

The equations use these variables.

T_{B}	Base gear input torque
T_{F}	Follower gear output torque
ω_{B}	Base gear angular velocity
ω_{F}	Follower gear angular velocity
J_{B}	Base gear rotational inertia
J_{F}	Follower gear rotational inertia
b_{B}	Base gear rotational viscous damping
b_{F}	Follower gear rotational viscous damping
N	Torque transmission gear ratio
η	Gear efficiency
P_{t}	Total power
P_{d}	Power loss due to damping
P_{s}	Rate change of stored internal kinetic energy

Ports

Input
BTrq - Base gear input torque
scalar
Base gear input torque, T_{B}, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, for Port Configuration, select Simulink.
FTrq - Follower gear output torque
scalar
Follower gear output torque, T_{F}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

B - Base gear angular velocity and torque

two-way connector port
Base gear angular velocity, ω_{B}, in rad/s. Base gear torque, T_{B}, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, for Port Configuration, select Two-way connection.
AirTemp - Ambient air temperature
scalar
Ambient air temperature, $T_{\text {air }}$, in K .

Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input ambient temperature.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal			Description	Variable	Units
Base	BaseTrq		Base gear input torque	T_{B}	$\mathrm{N} \cdot \mathrm{m}$
	BaseSpd		Base gear angular velocity	ω_{B}	rad/s
Flwr	FlwrTrq		Follower gear torque	T_{F}	$\mathrm{N} \cdot \mathrm{m}$
	FlwrSpd		Follower gear angular velocity	ω_{F}	rad/s
PwrInfo	PwrTrnsfrd	PwrBase	Mechanical power from base shaft	$P_{\text {Base }}$	W
		PwrFlwr	Mechanical power from follower shaft	$P_{\text {Flwr }}$	W
	PwrNotTrnsf rd	PwrMechLos S	Total gear power loss	$P_{n g}$	W
		PwrDampLos S	Power loss due to damping	P_{d}	W
	PwrStored	PwrStoredS hft	Rate change of stored internal kinetic energy	P_{s}	W

BSpd - Input gear angular velocity
 scalar

Base gear angular velocity, ω_{B}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

FSpd - Output gear angular velocity scalar

Follower gear angular velocity, ω_{F}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

F - Output gear angular velocity and torque

two-way connector port
Follower gear angular velocity, ω_{F}, in rad/s. Follower gear torque, T_{F}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration

Simulink (default) |Two-way connection
Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

Efficiency factors - Specify configuration

Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.

Setting	Implementation
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: - Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts - Efficiency speed breakpoints, omega_bpts - Efficiency temperature breakpoints, Temp_bpts For the air temperature, you can either: - Select Input temperature to create an input port. - Set a Ambient temperature, Tamb parameter value. To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

Interpolation method - Method
 Flat | Nearest|Linear point-slope|Linear Lagrange|Cubic spline

For more information, see "Interpolation Methods".

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Output shaft rotates in same direction as input - Rotation off (default) | on

Select to specify that the output shaft rotates in the same direction as the input.

Input ambient temperature - Create input port
 off (default)| on

Select to create input port AirTemp for the ambient air temperature.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input to output gear ratio, N - Ratio
2 (default) | scalar
Base-to-follower gear ratio, dimensionless.

```
Input shaft inertia, J1 - Inertia
.01 (default) | scalar
```

Base shaft inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Output shaft inertia, J2 - Inertia
. 01 (default) | scalar

Follower shaft inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Input shaft damping, b1 - Damping
. 001 (default) | scalar
Base viscous shaft damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Output shaft damping, b2 - Damping . 001 (default) | scalar

Follower viscous shaft damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.

Input shaft initial velocity, w1_o - Initial velocity 0 (default) | scalar

Base shaft initial velocity, in rad/s.

Efficiency

```
Constant efficiency factor, eta - Efficiency
```

1 (default) | scalar
Constant efficiency, η.

Dependencies

To enable this parameter, set Efficiency factors to Constant.

Efficiency lookup table, eta_tbl - Lookup table

M-by-N-by-L array
Dimensionless array of values for efficiency as a function of:

- Minput torques
- N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints
[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector
Vector of input torque, breakpoints for efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints
[52.4 78.5 105131157183209262314419 524] (default)| 1-by-N vector
Vector of speed, breakpoints for efficiency, in rad/s.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints [290 358] (default) | 1-by-L vector

Vector of ambient temperature breakpoints for efficiency, in K.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Air temperature, Tair - Ambient air temperature 297.15 (default) | scalar

Ambient air temperature, $T_{\text {air }}$, in K .
Dependencies
To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input ambient temperature.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Disc Clutch | Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance
Introduced in R2017a

Disc Clutch

Idealized disc clutch coupler
Library:
Powertrain Blockset / Drivetrain / Couplings

Description

The Disc Clutch block implements an idealized disc clutch coupler. The block couples the rotary input and output shafts through an idealized friction model. To determine the output torque, the block uses friction parameters, relative slip velocity, and applied input pressure.

In fuel economy and powertrain efficiency studies, you can use the Disc Clutch block to model the mechanical power transfer between common driveline elements such as transmissions, engines, and differentials.

To approximate the torque response, the Disc Clutch block implements friction and dynamic models that depend on the clutch lockup condition. The block determines the locked or unlocked condition based on an idealized dry clutch friction model. This table summarizes the logic the block uses to determine the clutch condition.

Clutch Condition When

Unlocked	$\omega_{i} \neq \omega_{o}$
or	
Locked	$T_{f \text { max }}<\left\|\frac{J_{o} T_{i}-\left(J_{o} b_{i}-J_{i} b_{o}\right) \omega_{i / o}}{J_{o}+J_{i}}\right\|$
	$\omega_{i}=\omega_{o}$
and	
$T_{f \text { max }}<\left\|T_{i}-\frac{J_{i}\left(b_{i}+b_{o}\right) \omega_{i}}{J_{o}+J_{i}}+b_{o} \omega_{i}\right\|$	

This table summarizes the friction and dynamic models that the block uses for locked or unlocked clutch conditions.

Clutch Condition	Friction Model	Dynamic Model
Unlocked	$T_{f \text { max }}=T_{k}$ where, $\begin{aligned} & T_{k}=N_{\text {disc }} P_{c} A_{e f f} R_{e f f} \mu_{k} \tanh \left[4\left(\omega_{i}-\omega_{o}\right)\right] \\ & R_{e f f}=\frac{2\left(R_{o} 3-R_{i} 3\right)}{3\left(R_{o}{ }^{2}-R_{i} 2\right)} \\ & \operatorname{and}_{C}=\max \left(P_{c}-P_{\text {eng }}, 0\right) \end{aligned}$	$\begin{aligned} & \dot{\omega}_{i} J_{i}=T_{i}-T_{f}-\omega_{i} b_{i} \\ & \dot{\omega}_{o} J_{o}=T_{f}+T_{o}-\omega_{o} b_{o} \end{aligned}$
Locked	$T_{f \text { max }}=T_{S}$ where, $\begin{aligned} & T_{S}=N_{\text {disc }} P_{C} A_{e f f} R_{e f f} \mu_{S} \\ & R_{\text {eff }}=\frac{2\left(R_{o} 3-R_{i} 3\right)}{3\left(R_{0}{ }^{2}-R_{i} 2\right)} \end{aligned}$	$\begin{aligned} & \dot{\omega}_{i}\left(J_{o}+J_{i}\right)=T_{o}-\omega_{i}\left(b_{i}+b_{o}\right)+T_{i} \\ & \omega_{i}=\omega_{o} \end{aligned}$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrI nfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrBase	Applied base power	$\omega_{i} T_{i}$
		PwrFlwr	Applied follower output power	$\omega_{0} T_{o}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrDampLoss	Damping power loss	$-b_{o} \omega_{o}^{2}-b_{i} \omega_{i}^{2}$
		PwrCltchSli pLoss	Clutch slip power loss	$-T_{k}\left(\omega_{i}-\omega_{o}\right)$
	PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredBa se	Rate change in base rotational kinetic energy	$\dot{\omega}_{i} \omega_{i} J_{i}$
		PwrStoredFl wr	Rate change in follower rotational kinetic energy	$\dot{\omega}_{o} \omega_{o} J_{o}$

The equations use these variables.
$\begin{array}{ll}\omega_{i} & \text { Input shaft angular speed } \\ \omega_{o} & \text { Output shaft angular speed }\end{array}$

b_{i}	Input shaft viscous damping
b_{o}	Output shaft viscous damping
J_{i}	Input shaft moment of inertia
J_{o}	Output shaft moment of inertia
T_{f}	Frictional torque
T_{i}	Net input torque
T_{k}	Kinetic frictional torque
T_{o}	Net output torque
T_{s}	Static frictional torque
$T_{f \text { max }}$	Maximum frictional torque before slipping
P_{c}	Applied clutch pressure
$P_{\text {eng }}$	Engagement pressure
$A_{e f f}$	Effective area
$N_{\text {disc }}$	Number of frictional discs
$R_{e f f}$	Effective clutch radius
R_{o}	Annular disk outer radius
R_{i}	Annular disk inner radius
R_{e}	Effective tire radius while under load and for a given pressure
μ_{s}	Coefficient of static friction
μ_{k}	Coefficient of kinetic friction

Ports

Input
Press - Applied clutch pressure
scalar
Base gear input torque, P_{c}, in $\mathrm{N} \cdot \mathrm{m}^{\wedge} 2$.
BTrq - Applied input torque
scalar
Applied input torque, T_{i}, typically from the engine crankshaft or dual mass flywheel damper, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

FTrq - Applied load torque

scalar
Applied load torque, T_{0}, typically from the differential or drive shaft, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Simulink.

B - Applied drive shaft angular speed and torque

two-way connector port
Applied drive shaft angular speed, ω_{i}, in rad/s. Applied drive shaft torque, T_{i}, in $N \cdot m$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal			Description	Units
Base	BTrq		Applied input torque, typically from the engine crankshaft or dual mass flywheel damper	$\mathrm{N} \cdot \mathrm{m}$
	BSpd		Applied drive shaft angular speed input	rad/s
Flwr	FTrq		Applied load torque, typically from the differential	$\mathrm{N} \cdot \mathrm{m}$
	FSpd		Drive shaft angular speed output	rad/s
Cltch	CltchForce		Applied clutch force	N
	CltchLocked		Clutch lock status	NA
	CltchSpdRatio		Clutch speed ratio	NA
	CltchEta		Clutch power transmission efficiency	NA
PwrInfo	PwrTrnsfrd	PwrBas e	Applied base power	W
		PwrFlw r	Applied follower output power	W
	PwrNotTrnsfrd	PwrDam pLoss	Damping power loss	W
		PwrClt chSlip Loss	Clutch slip power loss	W
	PwrStored	PwrSto redBas e	Rate change in base rotational kinetic energy	W
		PwrSto redFlw r	Rate change in follower rotational kinetic energy	W

BSpd - Angular speed

[^0]Applied drive shaft angular speed input, ω_{i}, in rad/s.
Dependencies
To create this port, for Port Configuration, select Simulink.

FSpd - Angular speed scalar

Drive shaft angular speed output, ω_{o}, in rad/s.

Dependencies

To create this port, for Port Configuration, select Simulink.

F - Output velocity and torque

two-way connector port
Output drive shaft angular speed, $\omega_{o i}$ in rad/s. Output drive shaft torque, T_{o}, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, for Port Configuration, select Two-way connection.

Parameters

Block Options

Port Configuration - Specify configuration

Simulink (default)|Two-way connection

Specify the port configuration.

Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

Clutch force equivalent net radius, Reff - Radius

1 (default) | scalar
Clutch force equivalent net radius, in m.
Number of disks, Ndisk - Ratio
1 (default) | scalar
Number of disks, dimensionless.

Effective applied pressure area, Aeff - Pressure area . 01 (default) | scalar

Effective applied pressure area, in $\mathrm{m}^{\wedge} 2$
Engagement pressure threshold, Peng - Pressure threshold 0 (default) | scalar

Pressure to engage clutch, in Pa.

Input shaft inertia, Jin - Inertia

. 1 (default) | scalar
Input shaft inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Output shaft inertia, Jout - Inertia
. 1 (default)| scalar
Output shaft inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Kinetic friction coefficient, muk - Coefficient

. 3 (default) | scalar

Kinetic friction coefficient, dimensionless.

Static friction coefficient, mus - Coefficient

. 5 (default) | scalar
Static friction coefficient, dimensionless.
Input shaft viscous damping, bin - Damping
. 001 (default) | scalar
Input shaft viscous damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Output shaft viscous damping, bout - Damping
. 001 (default) | scalar
Output shaft viscous damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial input shaft velocity, win_o - Initial velocity
0 (default) | scalar
Input shaft initial velocity, in rad/s.
Initial output shaft velocity, wout_o - Initial velocity 0 (default) | scalar

Input shaft initial velocity, in rad/s.
Clutch actuation time constant, tauC - Constant . 01 (default) | scalar

Clutch actuation time constant, in s.

Clutch initially locked - Select to initially lock clutch off (default) | on

Select to lock clutch initially.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance
Introduced in R2017a

Transfer Case

Differential as a planetary bevel gear

Library:	Powertrain Blockset / Drivetrain / Final Drive Unit
	Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final
	Drive Unit

Description

The Transfer Case block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier

Use the Transfer Case block to:

- Dynamically couple the post-transmission driveshaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.

Setting	Implementation
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: - Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts
	Efficiency speed breakpoints, omega_bpts - \quad Efficiency temperature breakpoints, Temp_bpts
For the air temperature, you can either:	

Power Accounting

For the power accounting, the block implements these equations.

Dynamics

The Transfer Case block implements these differential equations to represent the mechanical dynamic response for the crown gear, front axle, and rear axle.

Mechanical Dynamic Response	Differential Equation
Crown Gear	$\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$
Front Axle	$\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$
Rear Axle	$\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$

The equations use these variables.

N	Carrier-to-driveshaft gear ratio
J_{d}	Rotational inertia of the crown gear assembly
b_{d}	Crown gear linear viscous damping
ω_{d}	Driveshaft angular speed
η	Differential efficiency
J_{1}	Axle 1 rotational inertia
b_{1}	Axle 1 linear viscous damping
ω_{1}	Axle 1 speed
J_{2}	Axle 2 rotational inertia
b_{2}	Axle 2 linear viscous damping
ω_{2}	Axle 2 angular speed
T_{d}	Driveshaft torque
T_{1}	Axle 1 torque
T_{2}	Axle 2 torque
T_{i}	Driveshaft internal resistance torque
$T_{i 1}$	Axle 1 internal resistance torque
$T_{i 2}$	Axle 2 internal resistance torque

Ports

Inputs

DriveshftTrq - Torque

scalar
Applied input torque, typically from the engine crankshaft, in $N \cdot m$.
Axl1Trq - Torque
scalar
Axle 1 torque, T_{1}, in $N \cdot \mathrm{~m}$.

Axl2Trq - Torque
 scalar

Axle 2 torque, T_{2}, in $\mathrm{N} \cdot \mathrm{m}$.

Temp - Temperature

scalar
Temperature, in K.

Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

TrqSplitRatioConstant - Front axle torque split ratio
scalar
Front axle torque split ratio.

Dependencies

To enable this port, select Input front axle torque split ratio, TrqSplitRatio.

SpdLockConstant - Axle speed lock
 scalar

Axle speed lock.

Dependencies

To enable this port, select Input axle speed lock, SpdLock.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal		Description	Units
Driveshft	DriveshftTrq	Driveshaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd	Driveshaft speed	$\mathrm{rad} / \mathrm{s}$
Axl1	Axl1Trq	Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd	Axle 1 speed	$\mathrm{rad} / \mathrm{s}$
	Axl2Trq	Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd	Axle 2 speed	$\mathrm{rad} / \mathrm{s}$
PwrInfo	PwrTrnsfrd	PwrDriveshft	Mechanical power from driveshaft

Signal			PwrAxl1	Description
		Mechanical power from axle 1	W	
	PwrAxl2	Mechanical power from axle 2	W	
	PwrTrnsfrd	PwrMechLoss	Total power loss	W
	PwrDampLoss	Power loss due to damping	W	
	PwrStored	PwrStoredShft	Rate change of stored internal energy	W

DriveshftSpd - Angular speed
 scalar

Driveshaft angular speed, ω_{d}, in rad/s.

Axl1Spd - Angular speed

scalar
Axle 1 angular speed, ω_{1}, in rad/s.
Axl2Spd - Angular speed
scalar
Axle 2 angular speed, ω_{2}, in rad/s.

Parameters

Block Options

Efficiency factors - Specify configuration

Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor, eta parameter.

Setting	Implementation
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: - Efficiency lookup table, eta_tbl - Efficiency torque breakpoints, Trq_bpts - Efficiency speed breakpoints, omega_bpts - Efficiency temperature breakpoints, Temp_bpts For the air temperature, you can either: - Select Input temperature to create an input port. - Set a Ambient temperature, Tamb parameter value. To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

Interpolation method - Method
 Flat |Nearest|Linear point-slope|Linear Lagrange|Cubic spline

For more information, see "Interpolation Methods".

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input temperature - Create input port

off (default) | on
Select to create input port Temp for the temperature.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input front axle torque split ratio, TrqSplitRatio - Create input port off (default) | on

Select to create input port TrqSplitRatioConstant for the front axle torque split ratio.

Input axle speed lock, SpdLock - Create input port
 off (default) | on

Select to create input port SpdLockConstant for the axle speed lock.

Crown wheel (ring gear) located - Specify crown wheel connection

To the left of center-line (default)|To the right of center-line
Specify the crown wheel connection to the driveshaft.

```
Carrier to drive shaft ratio, Ndiff - Ratio
4 (default)| scalar
```

Carrier-to-driveshaft gear ratio, N, dimensionless.

Carrier inertia, Jd - Inertia

. 1 (default) | scalar

Rotational inertia of the crown gear assembly, J_{d}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the driveshaft inertia.
Carrier damping, bd - Damping
1e-3 (default) | scalar
Crown gear linear viscous damping, b_{d}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 inertia, Jw1 - Inertia
. 1 (default) | scalar
Axle 1 rotational inertia, J_{1}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping
1e-3 (default) | scalar
Axle 1 linear viscous damping, b_{1}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 2 inertia, Jw2 - Inertia
. 1 (default) | scalar
Axle 2 rotational inertia, J_{2}, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping
1e-3 (default)|scalar
Axle 2 linear viscous damping, b_{2}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 initial velocity, omegaw1o - Angular velocity
0 (default) | scalar
Axle 1 initial velocity, ω_{01}, in rad/s.
Axle 2 initial velocity, omegaw 20 - Angular velocity
0 (default) | scalar
Axle 2 initial velocity, ω_{02}, in rad/s.
Efficiency
Constant efficiency factor, eta - Efficiency
1 (default) | scalar
Constant efficiency, η.

Dependencies

To enable this parameter, set Efficiency factors to Constant.
Efficiency lookup table, eta_tbl - Lookup table
M-by-N-by-L array
Dimensionless array of values for efficiency as a function of:

- M input torques
- N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints [25, 50, 75, 100, 150, 200, 250] (default)| 1-by-M vector

Vector of input torque, breakpoints for efficiency, in $N \cdot m$.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints
[52.4 78.5 105131157183209262314419 524] (default)| 1-by-N vector
Vector of speed, breakpoints for efficiency, in rad/s.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints [290 358] (default) | 1-by-L vector

Vector of ambient temperature breakpoints for efficiency, in K.

Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb - Ambient temperature
297.15 (default) | scalar

Ambient air temperature, $T_{\text {air }}$, in K .

Dependencies

To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.

Front axle torque split ratio, TrqSplitRatio - Front axle torque split ratio 0.5 (default) | scalar

Front axle torque split ratio.

Dependencies

To enable this parameter, clear Input front axle torque split ratio, TrqSplitRatio.
Axle speed lock, SpdLock - Axle speed lock
0 (default) | scalar
Axle speed lock. Set this value to 0 to make the front and rear axle rotational speed not fixed. Set this value to 1 to make the front and rear axle rotational speed fixed.

Dependencies

To enable this parameter, clear Input axle speed lock, SpdLock.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Limited Slip Differential

Introduced in R2021b

Vehicle Dynamics Blocks

Vehicle Body 1DOF Longitudinal

Two-axle vehicle in forward and reverse motion

Library: Powertrain Blockset / Vehicle Dynamics Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:

- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.

You can select block options to create input ports for external forces, moments, air temperature, and wind speed.

Block Option Setting	External Input Ports	Description
External forces	FExt	External force applied to vehicle CG in the vehicle-fixed frame.
External moments	MExt	External moment about vehicle CG in the vehicle-fixed frame.
Air temperature	AirTemp	Ambient air temperature. Consider this option if you want to vary the temperature during run-time.
Wind X,Y,Z	WindXYZ	Wind speed along earth-fixed X-, Y-, and Z-axes. If you do not select this option, the block implements input port WindX - Longitudinal wind speed along the earth-fixed X-axis.

Vehicle Body Model

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CM.

The Vehicle Body 1DOF Longitudinal block implements these equations.

$$
\begin{aligned}
& F_{b}=m \ddot{x} \\
& F_{b}=F_{x F}+F_{x R}-F_{d, x}+F_{e x t, x}-m g \sin \gamma
\end{aligned}
$$

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear axles.

$$
\begin{aligned}
& F_{z F}=\frac{-M_{e x t, y}-M_{d, y}+b\left(F_{d, z}+F_{e x t, z}+m g \cos \gamma\right)-h\left(-F_{e x t, x}+F_{d, x}+m g \sin \gamma+m \ddot{x}\right)}{N_{F}(a+b)} \\
& F_{z R}=\frac{M_{e x t, y}+M_{d, y}+a\left(F_{d, z}+F_{e x t, z}+m g \cos \gamma\right)+h\left(-F_{e x t, x}+F_{d, x}+m g \sin \gamma+m \ddot{x}\right)}{N_{R}(a+b)}
\end{aligned}
$$

The wheel normal forces satisfy this equation.

$$
N_{F} F_{z F}+N_{R} F_{z R}-F_{e x t, z}=m g \cos \gamma
$$

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed.

$$
\begin{aligned}
& F_{d, x}=\frac{1}{2 T R} C_{d} A_{f} P_{a b s}{ }^{\dot{X}} \\
& F_{d, z}=\frac{1}{2 T R} C_{l} A_{f} P_{a b s}{ }^{\dot{x}} \\
& M_{d, y}=\left.\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}\right|^{\dot{x}}(a+b)
\end{aligned}
$$

By default, to calculate the wind speed along the vehicle-fixed x-axis, the block uses the longitudinal wind speed along the earth-fixed X-axis. If you select WindX,Y,Z, the block uses the wind speed along the earth-fixed X-, Y-, Z-axes.

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
$\begin{aligned} & \hline \text { PwrInf } \\ & 0 \end{aligned}$	PwrTrnsfrd Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block PwrNotTrnsfrd Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrFxExt	Externally applied force power	$P_{F x E x t}=F_{\chi E x t} \dot{x}$
		PwrFwFx	Longitudinal force power applied at the front axle	$P_{F w F X}=F_{w F} \dot{X}$
		PwrFwRx	Longitudinal force power applied at the rear axle	$P_{F w R \chi}=F_{w R} \dot{X}$
		PwrFxDrag	Drag force power	$P_{d}=-\frac{0.5 C_{d} A_{f} P_{a b s}\left(\dot{x}^{2}-w_{x}\right)^{2}}{287.058 T} \dot{x}$
		wrStoredGrvty	Rate change in gravitational potential energy	$P_{g}=-m g \dot{Z}$
		PwrStoredxdot	Rate in change of longitudinal kinetic energy	$P_{\dot{\chi}}=m \ddot{\chi} \dot{\chi}$

The equations use these variables.
$F_{x f}, F_{x r} \quad$ Longitudinal forces on each wheel at the front and rear ground contact points, respectively

$F_{z f}, F_{z r}$	Normal load forces on each wheel at the front and rear ground contact points, respectively
$F_{w F}, F_{w R}$	Longitudinal force on front and rear axles along vehicle-fixed x-axis
$F_{\text {xExt, }}, F_{w R}$	External force along the vehicle-fixed x-axis
$F_{d, x}, F_{d, z}$	Longitudinal and normal drag force on vehicle CG
$M_{d, y}$	Torque due to drag on vehicle about the vehicle-fixed y-axis
F_{d}	Aerodynamic drag force
V_{χ}	Velocity of the vehicle. When $V_{x}>0$, the vehicle moves forward. When $V_{x}<0$, the vehicle moves backward.
N_{f}, N_{r}	Number of wheels on front and rear axle, respectively
γ	Angle of road grade
m	Vehicle body mass
a, b	Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane
C_{d}	Frontal air drag coefficient
A_{f}	Frontal area
$P_{a b s}$	Absolute pressure
ρ	Mass density of air
x, \dot{x}, \ddot{x}	Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed x axis
w_{x}	Wind speed along the vehicle-fixed x-axis
\dot{Z}	Vehicle vertical velocity along the vehicle-fixed z-axis

Limitations

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

Ports

Input

FExt - External force on vehicle CG

array
External forces applied to vehicle CG, $F_{\text {xext }}, F_{\text {yext }}, F_{\text {zext }}$, in vehicle-fixed frame, in N. Signal vector dimensions are [1×3] or [3x1].

Dependencies

To enable this port, select External forces.

MExt - External moment about vehicle CG

array
External moment about vehicle CG, M_{x}, M_{y}, M_{z}, in the vehicle-fixed frame, in $N \cdot m$. Signal vector dimensions are [1×3] or [3x1].

Dependencies
To enable this port, select External moments.
FwF - Total longitudinal force on front axle scalar

Longitudinal force on the front axle, $F_{x f}$, along vehicle-fixed x-axis, in N .

FwR - Total longitudinal force on rear axle

scalar
Longitudinal force on the rear axle, $F w_{R}$, along vehicle-fixed x-axis, in N.
Grade - Road grade angle scalar

Road grade angle, γ, in deg.

WindX - Longitudinal wind speed

scalar

Longitudinal wind speed, W_{w}, along earth-fixed X-axis, in m/s.

Dependencies

To enable this port, clear Wind $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ components.

WindXYZ - Wind speed

```
array
```

Wind speed, $W_{w}, W_{w Y}, W_{w Z}$ along inertial X-, Y-, and Z-axes, in m / s. Signal vector dimensions are [1×3] or [3x1].

Dependencies

To enable this port, select Wind $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ components.

AirTemp - Ambient air temperature

scalar

Ambient air temperature, $T_{\text {air }}$, in K. Considering this option if you want to vary the temperature during run-time.

Dependencies

To enable this port, select Air temperature.

Output

Info - Bus signal

bus

Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along earth-fixed X -axis	Computed	m
			Y	Vehicle CG displacement along earth-fixed Y -axis	0	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X -axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y -axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed Y -axis (pitch)	Computed (input grade angle)	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
	FrntAxl	Disp	X	Front axle displacement along the earth-fixed X -axis	Computed	m
			Y	Front axle displacement along the earth-fixed Y -axis	0	m
			Z	Front axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Front axle velocity along the earth-fixed X -axis	Computed	m/s
			Ydot	Front axle velocity along the earth-fixed Y -axis	0	m/s
			Zdot	Front axle velocity along the earth-fixed Z-axis	Computed	m/s
	RearAxl	Disp	X	Rear axle displacement along the earth-fixed X -axis	Computed	m
			Y	Rear axle displacement along the earth-fixed Y -axis	0	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Computed	m

Signal				Description	Value	Units
Signal				Rear tire force, along the vehicle-fixed z-axis	Computed	N
	Drag	Fx		Drag force on vehicle CG along the vehicle-fixed x axis	Computed	N
		Fy		Drag force on vehicle CG along the vehicle-fixed y axis	Computed	N
		Fz		Drag force on vehicle CG along the vehicle-fixed z axis	Computed	N
	Grvty	Fx		Gravity force on vehicle CG along the vehicle-fixed x axis	Computed	N
		Fy		Gravity force on vehicle CG along the vehicle-fixed y axis	0	N
		Fz		Gravity force on vehicle CG along the vehicle-fixed z axis	Computed	N
Moments	Body	Mx		Net moment on vehicle CG about the vehicle-fixed x axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My		Net moment on vehicle CG about the vehicle-fixed y axis	0	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Net moment on vehicle CG about the vehicle-fixed zaxis	0	$\mathrm{N} \cdot \mathrm{m}$
	Drag	Mx		Drag moment on vehicle CG about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My		Drag moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Drag moment on vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Ext	Fx		External moment on vehicle CG about the vehicle-fixed x -axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Fy		External moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$

Signal			Description	Value	Units
		Fz	External moment on vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Disp	x	Front axle displacement along the vehicle-fixed x axis	Computed	m
		y	Front axle displacement along the vehicle-fixed y axis	0	m
		z	Front axle displacement along the vehicle-fixed z axis	Computed	m
	Vel	xdot	Front axle velocity along the vehicle-fixed x-axis	Computed	m/s
		ydot	Front axle velocity along the vehicle-fixed y-axis	0	m/s
		zdot	Front axle velocity along the vehicle-fixed z-axis	Computed	m/s
	Steer	WhlAngFL	Front left wheel steering angle	Computed	rad
		WhlangFR	Front right wheel steering angle	Computed	rad
RearAxl	Disp	x	Rear axle displacement along the vehicle-fixed x axis	Computed	m
		y	Rear axle displacement along the vehicle-fixed y axis	0	m
		z	Rear axle displacement along the vehicle-fixed z axis	Computed	m
	Vel	xdot	Rear axle velocity along the vehicle-fixed x-axis	Computed	m/s
		ydot	Rear axle velocity along the vehicle-fixed y-axis	0	m/s
		zdot	Rear axle velocity along the vehicle-fixed z-axis	Computed	m/s
	Steer	WhlAngRL	Rear left wheel steering angle	Computed	rad
		WhlAngRR	Rear right wheel steering angle	Computed	rad
Pwr	PwrExt		Applied external power	Computed	W
	Drag		Power loss due to drag	Computed	W

Signal			Description	Value	Units
PwrInfo	PwrTrns frd	PwrFxExt	Externally applied force power	Computed	W
		PwrFwFx	Longitudinal force power applied at the front axle	Computed	W
		PwrFwRx	Longitudinal force power applied at the rear axle	Computed	W
	PwrNotT rnsfrd	PwrFxDrag	Drag force power	Computed	W
	PwrStor ed	wrStoredGrvty	Rate change in gravitational potential energy	Computed	W
		PwrStoredxdot	Rate in change of longitudinal kinetic energy	Computed	W

xdot - Vehicle body longitudinal velocity
 scalar

Vehicle body longitudinal velocity along the vehicle-fixed reference frame x-axis, in m / s.

FzF - Front axle normal force

scalar
Normal load force on the front axle, $F_{x f}$, along vehicle-fixed z-axis, in N .

FzR - Rear axle normal force

scalar
Normal force on rear axle, $F_{z r}$, along the vehicle-fixed z-axis, in N .

Parameters

Options

External forces - FExt input port

off (default) | on
Specify to create input port FExt.

External moments - MExt input port

off (default) | on
Specify to create input port MExt.

Air temperature - AirTemp input port off (default) | on

Specify to create input port AirTemp.

Wind X, Y, Z components - WindXYZ input port

off (default) | on

Specify to create input port WindXYZ.

Longitudinal

Number of wheels on front axle, NF - Front wheel count
2 (default) | scalar
Number of wheels on front axle, N_{F}. The value is dimensionless.
Number of wheels on rear axle, NR - Rear wheel count
2 (default) | scalar
Number of wheels on rear axle, N_{R}. The value is dimensionless.

Mass, m - Vehicle mass

1500 (default) | scalar
Vehicle mass, M, in kg .
Horizontal distance from CG to front axle, a - Front axle distance 1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.
Horizontal distance from CG to rear axle, b-Rear axle distance
1.8 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

CG height above axles, h - Height

. 35 (default) | scalar
Height of vehicle CG above the ground, h, in m.

```
Longitudinal drag coefficient, Cd - Drag
. 3 (default)| scalar
```

Air drag coefficient, C_{d}. The value is dimensionless.

```
Longitudinal lift coefficient, Cl - Lift
```

0 (default) | scalar
Air lift coefficient, C_{l}. The value is dimensionless.

Longitudinal drag pitch moment, Cpm — Pitch drag

0 (default) | scalar
Pitch drag moment coefficient, $C_{p m}$. The value is dimensionless.

Frontal area, Af - Area

4 (default) | scalar
Effective vehicle cross-sectional area, A, to calculate the aerodynamic drag force on the vehicle, in m^{2}.

Initial position, x_o - Position
0 (default) | scalar

Vehicle body longitudinal initial position along the vehicle-fixed x -axis, x_{0}, in m .
Initial velocity, xdot_o - Velocity
0 (default) | scalar
Vehicle body longitudinal initial velocity along the vehicle-fixed x -axis, \dot{x}_{0}, in m / s.

Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar
Environmental air absolute pressure, $P_{a b s}$, in Pa .
Air temperature, T-Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$, in K.
Dependencies
To enable this parameter, clear Air temperature.
Gravitational acceleration, g - Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{2}$.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load
Introduced in R2017a

Vehicle Body 3DOF Longitudinal

3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion
Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.

You can specify the type of axle attachment to the vehicle:

- Grade angle - Vertical axle displacement from road surface to axles remains constant. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axles.
- Axle displacement - Axles have input-provided vertical displacement and velocity with respect to the road grade. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axle.
- External suspension - Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:

$$
\begin{aligned}
& F_{x}=F_{w F}+F_{w R}-F_{d, x}-F_{s x, F}-F_{s x, R}+F_{g, x} \\
& F_{z}=F_{d, z}-F_{s z, F}-F_{s z, R}+F_{g, z} \\
& M_{y}=a F_{s z, F}-b F_{s z, R}+h\left(F_{w F}+F_{w R}+F_{s x, F}+F_{s x, R}\right)-M_{d, y}
\end{aligned}
$$

Rigid-Body Vehicle Motion

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.

$$
\begin{aligned}
& \ddot{x}=\frac{F_{x}}{m}-q z \\
& \ddot{z}=\frac{F_{z}}{m}-q x \\
& \dot{q}=\frac{M_{y}}{I_{y y}} \\
& \dot{\theta}=q
\end{aligned}
$$

Suspension System Forces

If you configure the block with the Ground interaction type parameter Grade angle or Axle displacement, velocity, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:

$$
\begin{aligned}
& F s_{F}=N_{F}\left[F k_{F}+F b_{F}\right] \\
& F s_{R}=N_{R}\left[F k_{R}+F b_{R}\right]
\end{aligned}
$$

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.

$$
\begin{aligned}
& F k_{F}=f\left(d Z_{F}\right) \\
& F k_{R}=f\left(d Z_{R}\right)
\end{aligned}
$$

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.

$$
\begin{aligned}
& F b_{F}=f\left(d \dot{Z}_{F}\right) \\
& F b_{R}=f\left(d \dot{Z}_{R}\right)
\end{aligned}
$$

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.

$$
\begin{gathered}
d Z_{F}=Z_{F}-\bar{Z}_{F} \\
d Z_{R}=Z_{R}-\bar{Z}_{R} \\
d \dot{Z}_{F}=\dot{Z}_{F}-\dot{\bar{Z}}_{F} \\
d \dot{Z}_{R}=\dot{Z}_{R}-\dot{\bar{Z}}_{R}
\end{gathered}
$$

When the Ground interaction type parameter is Grade angle, the axle vertical positions (\bar{Z}_{F}, \bar{Z}_{R}) and velocities ($\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$) are set to 0 .

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:

$$
\begin{aligned}
& F_{d, x}=\frac{1}{2 T R} C_{d} A_{f} P_{a b s}{ }^{\dot{x}} \\
& F_{d, z}=\frac{1}{2 T R} C_{l} A_{f} P_{a b s} 1^{\dot{x}} \\
& M_{d, y}=\left.\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}\right|^{\dot{x}}(a+b)
\end{aligned}
$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf 0	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrFxExt	Externally applied longitudinal force power	$P_{\text {FxExt }}=F_{\text {xExt }} \dot{x}$
		PwrFzExt	Externally applied longitudinal force power	$P_{F z E x t}=F_{z E x t} \dot{z}$
		PwrMyExt	Externally applied pitch moment power	$P_{M z E x t}=M_{z E x t} \dot{\theta}$
		PwrFwFx	Longitudinal force applied at the front axle	$P_{F w F X}=F_{w F} \dot{X}$
		PwrFwRx	Longitudinal force applied at the rear axle	$P_{F w R x}=F_{w R} \dot{X}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrFsF	Internal power transferred between suspension and vehicle body at the front axle	$\begin{aligned} & P_{F s, F}=-P_{F w F x}+P_{F s b F} \\ & +P_{F s k, F}+F_{X F} \dot{\chi}_{F}+F_{Z F} \dot{z}_{F} \end{aligned}$
		PwrFsR	Internal power transferred between suspension and vehicle body at the rear axle	$\begin{aligned} & P_{F S, R}=-P_{F w R x}+P_{F s b, R} \\ & +P_{F s k, R}+F_{x F} \dot{x}_{F}+F_{z F} \dot{z}_{F} \end{aligned}$
		PwrFxDrag	Longitudinal drag force power	$P_{d, x}=F_{d, x} \dot{x}$
		PwrFzDrag	Vertical drag force power	$P_{d, z}=F_{d, z} \dot{z}$
		PwrMyDrag	Drag pitch moment power	$P_{d, M y}=M_{d, y} \dot{\theta}$
		PwrFsb	Total suspension damping power	$P_{F s b}=\sum_{i=F, R} F_{s b, i} \dot{z}_{i}$
	PwrStored Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredGrvty	Rate change in gravitational potential energy	$P_{g}=-m g \dot{Z}$
		PwrStoredxdot	Rate of change of longitudinal kinetic energy	$P_{\dot{\chi}}=m \ddot{\chi} \dot{\chi}$
		PwrStoredzdot	Rate of change of longitudinal kinetic energy	$P_{\dot{z}}=m \ddot{z} \dot{z}$

Bus Signal			Description	Equations
		PwrStoredq	Rate of change of rotational pitch kinetic energy	$P_{\dot{\theta}}=I_{y y} \ddot{\theta} \dot{\theta}$
		PwrStoredFsFzSp rng	Stored spring energy from front suspension	$P_{F s k F}=F_{s k, F} \dot{z}_{F}$
		PwrStoredFsRzSp rng	Stored spring energy from rear suspension	$P_{F s k F}=F_{s k, R} \dot{z}_{R}$

The equations use these variables.
$F_{x} \quad$ Longitudinal force on vehicle
$F_{z} \quad$ Normal force on vehicle
$M_{y} \quad$ Torque on vehicle about the vehicle-fixed y-axis
$F_{w F}, F_{w R} \quad$ Longitudinal force on front and rear axles along vehicle-fixed x-axis
$F_{d, x}, F_{d, z} \quad$ Longitudinal and normal drag force on vehicle CG
$F_{s x, F,}, F_{s x, R} \quad$ Longitudinal suspension force on front and rear axles
$F_{s z, F}, F_{s z, R} \quad$ Normal suspension force on front and rear axles
$F_{g, x} F_{g, z} \quad$ Longitudinal and normal gravitational force on vehicle along the vehicle-fixed frame
$M_{d, y} \quad$ Torque due to drag on vehicle about the vehicle-fixed y-axis
a, b
$h \quad$ Height of vehicle CG above the axle plane along vehicle-fixed z-axis
$F s_{F}, F s_{R}$
Front and rear axle suspension force along vehicle-fixed z-axis
$Z_{w F}, Z_{w R} \quad$ Front and rear vehicle normal position along earth-fixed z-axis
Θ
m
Vehicle pitch angle about the vehicle-fixed y-axis
Vehicle body mass
$N_{F}, N_{R} \quad$ Number of front and rear wheels
$I_{y y}$
Vehicle body moment of inertia about the vehicle-fixed y-axis
$x, \dot{x}, \ddot{x} \quad$ Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed x axis
$z, \dot{z}, \ddot{z} \quad$ Vehicle normal position, velocity, and acceleration along the vehicle-fixed z-axis
$F k_{F}, F k_{R} \quad$ Front and rear wheel suspension stiffness force along vehicle-fixed z-axis
$F b_{F}, F b_{R} \quad$ Front and rear wheel suspension damping force along vehicle-fixed z-axis
Z_{F}, Z_{R}
\dot{Z}_{F}, \dot{Z}_{R}
\bar{Z}_{F}, \bar{Z}_{R}
Front and rear vehicle vertical position along earth-fixed Z-axis
Front and rear vehicle vertical velocity along vehicle-fixed z-axis
Front and rear wheel axle vertical position along vehicle-fixed z-axis
$\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$
Front and rear wheel axle vertical velocity along earth-fixed z-axis

$d Z_{F}, d Z_{R}$	Front and rear axle suspension deflection along vehicle-fixed z-axis
$d \dot{Z}_{F}, d \dot{Z}_{R}$	Front and rear axle suspension deflection rate along vehicle-fixed z-axis
C_{d}	Frontal air drag coefficient acting along the vehicle-fixed x-axis
C_{l}	Lateral air drag coefficient acting along the vehicle-fixed z-axis
$C_{p m}$	Air drag pitch moment acting about the vehicle-fixed y-axis
A_{f}	Frontal area
$P_{a b s}$	Environmental absolute pressure
R	Atmospheric specific gas constant
T	Environmental air temperature
w_{χ}	Wind speed along the vehicle-fixed x-axis

Ports

Input
FExt - External force on vehicle CG
array
External forces applied to vehicle CG, $F_{\text {xext }}, F_{\text {yext }}, F_{\text {zext }}$, in vehicle-fixed frame, in N. Signal vector dimensions are [1×3] or [3x1].

Dependencies
To enable this port, select External forces.

MExt - External moment about vehicle CG

array
External moment about vehicle CG, M_{x}, M_{y}, M_{z}, in the vehicle-fixed frame, in $N \cdot m$. Signal vector dimensions are [1×3] or [3x1].

Dependencies

To enable this port, select External moments.

FwF - Total longitudinal force on the front axle

scalar
Longitudinal force on the front axle, $F w_{F}$, along vehicle-fixed x-axis, in N .

FwR - Total longitudinal force on the rear axle

scalar
Longitudinal force on the rear axle, $F w_{R}$, along vehicle-fixed x-axis, in N .

Grade - Road grade angle

scalar
Road grade angle, γ, in deg.

FsF - Suspension force on front axle per wheel

 vectorSuspension force on front axle, $F s_{F}$, along the vehicle-fixed z-axis, in N.

Dependencies

To enable this port, for the Ground interaction type parameter, select External suspension.

FsR - Suspension force on rear axle per wheel

vector
Suspension force on rear axle, $F s_{R}$, along the vehicle-fixed z-axis, in N .

Dependencies

To enable this port, for the Ground interaction type parameter, select External suspension.

WindXYZ - Wind speed

array
Wind speed, W_{X}, W_{Y}, W_{Z} along earth-fixed X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

AirTemp - Ambient air temperature

scalar

Ambient air temperature, $T_{\text {air }}$, in K . Considering this option if you want to vary the temperature during run-time.

Dependencies

To enable this port, select Air temperature.

zF, R - Forward and rear axle positions
 vector

Forward and rear axle positions along the vehicle-fixed z-axis, \bar{Z}_{F}, \bar{Z}_{R}, in m .

Dependencies

To enable this port, for the Ground interaction type parameter, select Axle displacement, velocity.
zdotF, R - Forward and rear axle velocities
vector
Forward and rear axle velocities along the vehicle-fixed z-axis, $\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$, in m/s.

Dependencies

To enable this port, for the Ground interaction type parameter, select Axle displacement, velocity.

Output

Info - Bus signal

bus
Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Computed	m
			Y	Vehicle CG displacement along earth-fixed Y-axis	0	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X -axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed Y-axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
	FrntAxl	Disp	X	Front axle displacement along the earth-fixed X-axis	Computed	m
			Y	Front axle displacement along the earth-fixed Y-axis	0	m
			Z	Front axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Front axle velocity along the earth-fixed X-axis	Computed	m/s
			Ydot	Front axle velocity along the earth-fixed Y-axis	0	m/s
			Zdot	Front axle velocity along the earth-fixed Z-axis	Computed	m/s
	RearAxl	Disp	X	Rear axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear axle displacement along the earth-fixed Y-axis	0	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Rear axle velocity along the earth-fixed X-axis	Computed	m/s
			Ydot	Rear axle velocity along the earth-fixed Y-axis	0	m/s

Signal				Description	Value	Units
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Computed	m / s
BdyFrm	Cg	Disp	x	Vehicle CG displacement along the vehicle-fixed x axis	Computed	m
			y	Vehicle CG displacement along the vehicle-fixed y axis	0	m
			z	Vehicle CG displacement along the vehicle-fixed z axis	Computed	m
		Vel	xdot	Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehicle-fixed y-axis	0	m/s
			zdot	Vehicle CG velocity along the vehicle-fixed z-axis	Computed	m/s
		AngVel	p	Vehicle angular velocity about the vehicle-fixed x axis (roll rate)	0	rad/s
			q	Vehicle angular velocity about the vehicle-fixed y axis (pitch rate)	Computed	rad/s
			r	Vehicle angular velocity about the vehicle-fixed z axis (yaw rate)	0	rad/s
		Accel	ax	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	gn
			ay	Vehicle CG acceleration along the vehicle-fixed y axis	0	gn
			az	Vehicle CG acceleration along the vehicle-fixed z axis	Computed	gn
	Forces	Body	Fx	Net force on vehicle CG along the vehicle-fixed x axis	Computed	N
			Fy	Net force on vehicle CG along the vehicle-fixed y axis	0	N
			Fz	Net force on vehicle CG along the vehicle-fixed z axis	Computed	N

Signal			Description	Value	Units
		Fy	Drag force on vehicle CG along the vehicle-fixed y axis	Computed	N
		Fz	Drag force on vehicle CG along the vehicle-fixed z axis	Computed	N
	Grvty	Fx	Gravity force on vehicle CG along the vehicle-fixed x axis	Computed	N
		Fy	Gravity force on vehicle CG along the vehicle-fixed y axis	0	N
		Fz	Gravity force on vehicle CG along the vehicle-fixed z axis	Computed	N
Moments	Body	Mx	Body moment on vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Body moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Body moment on vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Drag	Mx	Drag moment on vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Drag moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Drag moment on vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Ext	Fx	External moment on vehicle CG about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Fy	External moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Fz	External moment on vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Disp	X	Front axle displacement along the vehicle-fixed x axis	Computed	m

Signal		Description	Value	Units
	PwrFwFx	Longitudinal force applied at the front axle	Computed	W
	PwrFwRx	Longitudinal force applied at the rear axle	Computed	W
PwrNotT rnsfrd	PwrFsF	Internal power transferred between suspension and vehicle body at the front axle	Computed	W
	PwrFsR	Internal power transferred between suspension and vehicle body at the rear axle	Computed	W
	PwrFxDrag	Longitudinal drag force power	Computed	W
	PwrFzDrag	Vertical drag force power	Computed	W
	PwrMyDrag	Drag pitch moment power	Computed	W
	PwrFsb	Total suspension damping power	Computed	W
PwrStor ed	PwrStoredGrvty	Rate change in gravitational potential energy	Computed	W
	PwrStoredxdot	Rate of change of longitudinal kinetic energy	Computed	W
	PwrStoredzdot	Rate of change of longitudinal kinetic energy	Computed	W
	PwrStoredq	Rate of change of rotational pitch kinetic energy	Computed	W
	PwrStoredFsFzSprng	Stored spring energy from front suspension	Computed	W
	PwrStoredFsRzSprng	Stored spring energy from rear suspension	Computed	W

xdot - Vehicle longitudinal velocity

scalar
Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

FzF - Front axle normal force

scalar

Normal force on front axle, $F z_{F}$, along the vehicle-fixed z-axis, in N .

FzR - Rear axle normal force

scalar
Normal force on rear axle, $F z_{R}$, along the vehicle-fixed z-axis, in N .

Parameters

Options
External forces - FExt input port
off (default) | on
Specify to create input port FExt.
External moments - MExt input port
off (default) | on
Specify to create input port MExt.
Air temperature - AirTemp input port
off (default) | on
Specify to create input port AirTemp.

Longitudinal

Number of wheels on front axle, NF - Front wheel count 2 (default) | scalar

Number of wheels on front axle, N_{F}. The value is dimensionless.
Number of wheels on rear axle, NR - Rear wheel count 2 (default) | scalar

Number of wheels on rear axle, N_{R}. The value is dimensionless.

Mass, m - Vehicle mass

1200 (default) | scalar
Vehicle mass, m, in kg.
Horizontal distance from CG to front axle, a-Front axle distance 1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.
Horizontal distance from CG to rear axle, b-Rear axle distance
1.8 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m .
CG height above axles, h - Height
0.35 (default) | scalar

Height of vehicle CG above the axles, h, in m.

Longitudinal drag coefficient, Cd - Drag

. 3 (default) | scalar
Air drag coefficient, C_{d}. The value is dimensionless.

Frontal area, Af - Area

2 (default) | scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{\wedge} 2$.

Initial position, x_o - Position
0 (default) | scalar
Vehicle body longitudinal initial position along earth-fixed x-axis, x_{0}, in m .
Initial velocity, xdot_o - Velocity
0 (default) | scalar
Vehicle body longitudinal initial velocity along earth-fixed x-axis, \dot{x}_{0}, in m / s.

Vertical

Longitudinal lift coefficient, Cl - Lift
. 1 (default) | scalar
Lift coefficient, C_{l}. The value is dimensionless.
Initial vertical position, z_o - Position
-. 35 (default) | scalar
Initial vertical CG position, z_{0}, along the vehicle-fixed z-axis, in m .
Initial vertical velocity, zdot_o - Velocity
0 (default) | scalar
Initial vertical CG velocity, $z d o t_{0}$, along the vehicle-fixed z-axis, in m.

Pitch

Inertia, Iyy - About body y-axis
3500 (default) | scalar
Vehicle body moment of inertia about body z-axis.

Longitudinal drag pitch moment, Cpm — Drag coefficient
 . 1 (default) | scalar

Pitch drag moment coefficient. The value is dimensionless.

Initial pitch angle, theta_o - Pitch

0 (default) | scalar
Initial pitch angle about body z-axis, in rad.
Initial angular velocity, q_o - Pitch velocity
0 (default) | scalar
Initial vehicle body angular velocity about body z-axis, in rad/s.

```
Suspension
Front axle stiffness force data, FskF - Force
\([-50,-1,0,2,3,52] . * 1.5 e 4\) (default) |vector
```

Front axle stiffness force data, Fk_{F}, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle displacement data, dzsF - Displacement
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default)|vector
Front axle displacement data, in m.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle damping force data, FsbF - Damping force [-10000 -100 -10 010100 10000] (default)|vector

Front axle damping force, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle velocity data, dzdotsF - Velocity

```
[-10 -1 -.1 0 .1 1 10] (default)| vector
```

Front axle velocity data, in m/s.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle stiffness force data, FskR - Force
[-50, -1, 0, 2, 3, 52].*le4 (default)| vector
Rear axle stiffness force data, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle displacement data, dzsR - Displacement
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default)|vector
Rear axle displacement data, in m.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle damping force data, FsbR - Damping force
[-10000-100-10 010100 10000] (default) |vector
Rear axle damping force, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle velocity data, dzdotsR - Velocity
[-10 -1 -. 1 0 . 1110 1 (default)| vector
Rear axle velocity data, in m/s.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Environment

Absolute air pressure, Pabs - Pressure

101325 (default) | scalar
Environmental air absolute pressure, $P_{a b s}$, in Pa.

Air temperature, Tair - Ambient air temperature

273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$ in K .

Dependencies

To enable this parameter, clear Air temperature.
Gravitational acceleration, g-Gravity
9.81 (default)

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{2}$.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load

Introduced in R2017a

Vehicle Body Total Road Load

Vehicle motion using coast-down testing coefficients

Description

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for systemlevel performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.

- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

Dynamics

To calculate the total road load acting on the vehicle, the block implements this equation.

$$
F_{\text {road }}=a+b \dot{x}+c \dot{x}^{2}+m g \sin (\theta)
$$

To determine the coefficients a, b, and c, you can use a test procedure similar to the one described in Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. You can also use Simulink ${ }^{\circledR}$ Design Optimization ${ }^{\text {TM }}$ to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.

$$
F_{\text {total }}=m \ddot{x}+F_{\text {road }}
$$

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.

$$
\begin{aligned}
& P_{\text {total }}=F_{\text {total }} \dot{X} \\
& P_{\text {road }}=F_{\text {road }} \dot{x}
\end{aligned}
$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equations
PwrIn fo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	$\begin{aligned} & \text { PwrFxE } \\ & \text { xt } \end{aligned}$	Externally applied force power	$P_{\text {FXEXt }}$	$P_{\text {FxExt }}=F_{\text {total }} \dot{x}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	$\begin{aligned} & \text { PwrFxD } \\ & \text { rag } \end{aligned}$	Drag force power	P_{D}	$P_{d}=-\left(a+b \dot{x}+c \dot{x}^{2}\right) \dot{x}$
	PwrStored - Stored energy rate of change - Positive signals indicate an increase	wrStor edGrvt y	Rate change in gravitational potential energy	P_{g}	$P_{g}=-m g \dot{Z}$
	- Negative signals indicate a decrease	PwrSto redxdo t	Rate in change of longitudinal kinetic energy	$P_{\text {xdot }}$	$P_{\dot{\chi}}=m \ddot{x} \dot{\chi}$

The equations use these variables.

a	Steady-state rolling resistance coefficient
b	Viscous driveline and rolling resistance coefficient
c	Aerodynamic drag coefficient
g	Gravitational acceleration
x	Vehicle longitudinal displacement with respect to ground, in the vehicle-fixed
	frame
\dot{x}	Vehicle longitudinal velocity with respect to ground, in the vehicle-fixed frame
\ddot{x}	Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame
m	Vehicle body mass
Θ	Road grade angle
$F_{\text {total }}$	Total force acting on vehicle
$F_{\text {road }}$	Resistive road load due to losses and gravitational load
$P_{\text {total }}$	Total tractive input power
$P_{\text {road }}$	Total power due to losses and gravitational load
\dot{Z}	Vehicle vertical velocity along the vehicle-fixed z-axis

Ports

Input

xdot - Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity, \dot{x}, in m/s.

Dependencies

To enable this port, for the Input Mode parameter, select Kinematic.

xddot - Vehicle longitudinal acceleration
 scalar

Vehicle total longitudinal acceleration, \ddot{x}, in $m / \mathrm{s}^{\wedge} 2$.

Dependencies

To enable this port, for the Input Mode parameter, select Kinematic.

PwrTot - Tractive input power
 scalar

Tractive input power, $P_{\text {total }}$, in W.

Dependencies

To enable this port, for the Input Mode parameter, select Power.

ForceTot - Tractive input force

scalar
Tractive input force, $F_{\text {totala }}$, in N.

Dependencies

To enable this port, for the Input Mode parameter, select Force.

Grade - Road grade angle
 scalar

Road grade angle, Θ, in deg.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal		Description	Value	Units	
In er	Cg	Disp	X	Vehicle CG displacement along earth- fixed X-axis	Computed
f	m				

Signal				Description	Value	Units
$\begin{aligned} & \mathrm{tF} \\ & \mathrm{rm} \end{aligned}$			Y	Vehicle CG displacement along earthfixed Y-axis	0	m
			Z	Vehicle CG displacement along earthfixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed Y -axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
$\begin{aligned} & \mathrm{Bd} \\ & \mathrm{yF} \\ & \mathrm{rm} \end{aligned}$	Cg	Disp	x	Vehicle CG displacement along the vehicle-fixed x-axis	Computed	m
			y	Vehicle CG displacement along the vehicle-fixed y-axis	0	m
			z	Vehicle CG displacement along the vehicle-fixed z-axis	0	m
		Vel	xdot	Vehicle CG velocity along the vehiclefixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehiclefixed y-axis	0	m/s
			zdot	Vehicle CG velocity along the vehiclefixed z-axis	0	m/s
		Acc	ax	Vehicle CG acceleration along the vehicle-fixed x-axis	Computed	gn
			ay	Vehicle CG acceleration along the vehicle-fixed y-axis	0	gn
			az	Vehicle CG acceleration along the vehicle-fixed z-axis	0	gn
	Forc es	Body	Fx	Net force on vehicle CG along the vehicle-fixed x -axis	Computed	N
			Fy	Net force on vehicle CG along the vehicle-fixed y-axis	0	N
			Fz	Net force on vehicle CG along the vehicle-fixed z-axis	0	N
		Ext	FX	External force on vehicle CG along the vehicle-fixed x-axis	Computed	N

xdot - Vehicle longitudinal velocity
 scalar

Vehicle total longitudinal velocity, \dot{x}, in m / s.

Dependencies

To enable this port, for the Input Mode parameter, select Power or Force.

ForceTot - Tractive input force

scalar
Tractive input force, $F_{\text {total }}$, in N .

Dependencies

To enable this port, for the Input Mode parameter, select Kinematic.

Parameters

Input Mode - Specify input mode

Kinematic (default)| Force | Power
Specify the input type.

- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power. Use this configuration for powertrain, driveline, and braking system design, or component sizing.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

Dependencies

This table summarizes the port and input mode configurations.

Input Mode	Creates Ports
Kinematic	xdot
	xddot
Force	Force
Power	Power

Mass - Vehicle body mass

1200 (default) | scalar
Vehicle body mass, m, in kg.

```
Rolling resistance coefficient, a - Rolling
196 (default) | scalar
```

Steady-state rolling resistance coefficient, a, in N .

Rolling and driveline resistance coefficient, b-Rolling and driveline

 2.232 (default) | scalarViscous driveline and rolling resistance coefficient, b, in $\mathrm{N} * \mathrm{~s} / \mathrm{m}$.

Aerodynamic drag coefficient, c-Drag

0.389 (default) | scalar

Aerodynamic drag coefficient, c, in $\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}$.

Gravitational acceleration, g - Gravity

9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Initial position, x_o - Position
0 (default) | scalar
Vehicle longitudinal initial position, in m.
Initial velocity, xdot_o - Velocity
0 (default) | scalar
Vehicle longitudinal initial velocity with respect to ground, in m/s.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.
[2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263_201003. SAE International, March 2010.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal

Introduced in R2017a

Motorcycle Chain

Implement motorcycle chain

Library:	Powertrain Blockset / Drivetrain / Couplings
	Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings

Description

The Motorcycle Chain block implements the dynamic effects of a motorcycle chain on the Motorcycle Body Longitudinal In-Plane block, including dynamic tension and moment drive coupling.

This figure shows how the chain relates geometrically to the motorcycle frame, rear arm, and rear wheel.

Frame	Variable in Figure	Description
Motorcycle main frame	O_{m}	Main frame origin
- x_{m} - Forward along vector pointing to front fork		
- z_{m} - Downward		
- y_{m} - Orthogonal to motorcycle plane		

Ports

Input

MDshft - Drive shaft moment on front sprocket
scalar
Drive shaft moment on front sprocket about y_{m}, in $\mathrm{N} \cdot \mathrm{m}$.

FCpR - Longitudinal and vertical forces at rear wheel contact patch vector

Longitudinal and vertical forces at rear wheel contact patch $O_{C p R}$, along $i_{C p R}$ and $k_{C p R}$, in N. Signal vector dimensions are [1x2] or [2x1].

ThetaFrm - Main frame pitch angle scalar

Main frame pitch angle, $\theta_{f r m}$, in rad.

ThetaArmR - Rear arm pitch angle scalar

Rear arm pitch angle, $\Theta_{r a}$, in rad.

MBrkR - Brake moment at rear wheel

scalar
Brake moment at the rear wheel $G_{W h l R r}$, about $j_{W h l R r}$, in $\mathrm{N} \cdot \mathrm{m}$.

AngAWhlR - Rear wheel angular acceleration

scalar
Rear wheel angular acceleration, in rad/s ${ }^{2}$.

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal	Description	Units
FChn	Chain force applied to rear arm	N
AngVSprtR	Angular velocity of rear sprocket	$\mathrm{rad} / \mathrm{s}$
MDrvSprtR	Wheel damper moment applied to rear sprocket	$\mathrm{N} \cdot \mathrm{m}$
WhlDmpAng	Angle between rear sprocket and rear wheel	rad

MDrvSprtR - Wheel damper moment at rear sprocket

scalar
Wheel damper moment applied to rear sprocket, in $N \cdot m$.

MDrvArmR - Drive chain moment at rear arm
 scalar

Drive chain moment at rear arm $O_{A r m R r}$, about $j_{A r m R r}$, in $\mathrm{N} \cdot \mathrm{m}$.

MDrvFrm - Drive chain moment at frame

scalar

Drive chain moment at the frame $O_{\text {Frm }}$, about $j_{F r m}$, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

This figure shows how the chain relates geometrically to the motorcycle frame, rear arm, and rear wheel.

Front Sprocket

Coordinates, SprktFrPxz - Front sprocket position

[0.05-0.05] (default)|vector
Position of front sprocket, SprktFrPxz, along $x_{m} z_{m}$, respectively, in m.

Mass moment of inertia, SprktFrIyy - Front sprocket inertia

 0.005 (default) | scalarFront sprocket mass moment of inertia, SprktFrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Radius, SprktFrR - Front sprocket radius

0.04 (default) | scalar

Front sprocket radius, SprktFrR, in m.

Rear Sprocket

Mass moment of inertia, SprktRrIyy - Rear sprocket inertia 0.01 (default)| scalar

Rear sprocket mass moment of inertia, SprktRrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Radius, SprktRrR - Rear sprocket radius

0.12 (default) | scalar

Rear sprocket radius, SprktRrR, in m.

Rear Wheel

Mass moment of inertia, WhlRrIyy - Rear wheel inertia 0.66 (default) | scalar

Rear wheel mass moment of inertia, WhlRrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Radius, WhlRrR - Rear wheel radius

0.33 (default) | scalar

Rear wheel radius, $W h l R r R$, in m.

Swing Arm

Arm length, ArmRrLen - Swing arm length
0.535 (default) | scalar

Arm length, ArmRrLen, in m.

Wheel Damper

Stiffness, WhlDmpK - Wheel damper stiffness
le4 (default) | scalar
Wheel damper stiffness, WhlDmpK, in N/rad.
Damping, WhlDmpC - Wheel damping
le2 (default) | scalar
Wheel damper damping, WhlDmpC, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{rad}$.
Equilibrium angle - Wheel damper equilibrium angle
-15e-3 (default) | scalar
Equilibrium angle, WhlDmpAng0, in rad.
Initial Conditions
Rear sprocket angular velocity, SprktRrAngV0 - Angular velocity
0 (default) | scalar
Rear sprocket angular velocity, SprktRrAngV0, in rad/s.
Rear wheel angular velocity, WhlRrAngV0 - Angular velocity
0 (default) | scalar
Rear wheel angular velocity, WhlRrAngV0, in rad/s.

References

[1] Giner, David Moreno. "Symbolic-Numeric Tools for the Analysis of Motorcycle Dynamics. Development of a Virtual Rider for Motorcycles Based on Model Predictive Control." PhD diss., Universidad Miguel Hernández de Elche, 2016.

Extended Capabilities

$\mathbf{C} / \mathbf{C}++$ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Motorcycle Body Longitudinal In-Plane

Introduced in R2021b

Motorcycle Body Longitudinal In-Plane

Longitudinal in-plane motorcycle vehicle motion

Library:
Powertrain Blockset / Vehicle Dynamics
Vehicle Dynamics Blockset / Vehicle Body

Description

The Motorcycle Body Longitudinal In-Plane block implements a longitudinal in-plane motorcycle body model to calculate longitudinal, vertical, and pitch motion. The block accounts for:

- Mass of the frame, rear arm, front upper fork, front lower fork, front wheel, and rear wheel
- In-plane dynamic effects of the frame, front lower fork, front wheel, rear wheel, rear suspension, front suspension, rear wheel damper, rear arm, and chain
- External forces, external moments, and aerodynamic drag
- Road incline
- Weight distribution between the axles due to acceleration

Consider using this block to represent motorcycle motion in powertrain and fuel economy studies, for example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the forces on the motorcycle frames. The block then determines the position and velocity of motorcycle at the front and rear contact patches.

Layout

To determine the rigid-body motorcycle motion, the block uses right-handed (RH) Cartesian reference frames systems attached to the motorcycle. i, j, and k are orthogonal unit vectors attached to the frames.

Frame	Variable in Figure	Description
Road	x, z	Road-fixed coordinate system. x is along road grade, and z points downward.
Motorcycle main frame - $i_{F r m}$ - Forward along vector given by $\theta_{f r m}$ - $k_{\text {Frm }}$ - Downward - $j_{\text {Frm }}$ - Orthogonal to motorcycle plane	$O_{\text {Frm }}$	Main frame origin
	$G_{\text {Frm }}$	Center of mass (CM) of the main frame with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{F r m}$, respectively
	$G_{\text {Rdr }}$	CM of the rider with respect to $O_{\text {Frm }}$, along $i_{\text {Frm }}$ and $k_{F r m}$, respectively
	$\theta_{f r m}$	Main frame rotation about $j_{\text {Frm }}$
Upper fork - $i_{\text {FrkUp }}$ - Forward along vector given by $\theta_{f r m}$ - $k_{\text {FrkUp }}$ - Downward	$O_{\text {FrkUp }}$	Upper fork origin

Frame	Variable in Figure	Description
- $j_{F r k U p}$ - Orthogonal to motorcycle plane	$G_{\text {FrkUp }}$	CM of the upper fork with respect to $O_{F r k U p}$, along $i_{F r k U_{p}}$ and $k_{F r k U_{p}}$, respectively
Lower fork - $i_{\text {FrkLw }}$ - Forward along vector given by $\theta_{f r m}$ - $k_{\text {FrkLw }}$ - Downward - $j_{\text {FrkLw }}$ - Orthogonal to motorcycle plane	O_{F}	Lower fork origin
	$G_{\text {FrkLw }}$	CM of the lower fork with respect to $O_{\text {FrkLw }}$, along $i_{F r k L w}$ and $k_{F r k L w}$, respectively
Rear arm - $i_{\text {ArmRr }}$ - Forward along vector given by $\theta_{r a}$ - $k_{\text {ArmRr }}$ - Downward - $j_{\text {ArmRr }}$ - Orthogonal to motorcycle plane	$O_{\text {ArmRr }}$	Rear arm origin
	$G_{\text {ArmRr }}$	CM of the rear arm with respect to $O_{\text {ArmRr }}$, along $i_{\text {ArmRr }}$ and $k_{\text {ArmRr }}$, respectively
	$\theta_{r a}$	Rear arm rotation about $j_{A r m R r}$
Front wheel contact patch - $i_{C P F}$ - Forward along vector given by road-fixed x - axis - $k_{C P F}$ - Downward along vector given by road-fixed z - axis - $j_{C P F}$ - Orthogonal to motorcycle plane	$O_{C p F}$	Front wheel contact patch origin
Rear wheel contact patch - $i_{C p R}$ - Forward along vector given by road-fixed x - axis - $k_{C P R}$ - Downward along vector given by road-fixed z - axis - $j_{C p R}$ - Orthogonal to motorcycle plane	$O_{C p R}$	Rear wheel contact patch origin

Use the parameters in this table to specify the geometric layout of your motorcycle.

Parameter	Position	Rear contact patch longitudinal coordinate, CpRrX0	$O_{C p R}$ with respect to road-fixed coordinate system, along x
Initial conditions	Rear contact patch vertical coordinate, CpRrZ0	$O_{C p R}$ with respect to road-fixed coordinate system, along z	
Pitch angle of rear arm, ArmRrAng0	$\theta_{r a}$		
Pitch angle of main frame, FrmAng0	$\theta_{F r m}$		

Parameter			Variable in Figure
		Fork length, FrkFrL0	d_{f}
Frame		Center of mass location, FrmCmPxz	$G_{F r m}$ with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{F r m}$, respectively
		Length, FrmLen	FrmLen
Rider		Center of mass location, RdrCmPxz	$G_{\text {Rdr }}$ with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{F r m}$, respectively
Front Fork	Upper	Position, FrkUpCmPxz	$G_{F r k U p}$ with respect to $O_{F r k U p}$, along $i_{F r k U_{p}}$ and $k_{F r k U_{p}}$, respectively
		Offset, FrkOfs	FrkOfs
	Lower	Position, FrkLwCmPxz	$G_{F r k L w}$ with respect to $O_{F r k L w}$, along $i_{F r k L w}$ and $k_{F r k L w}$, respectively
Rear Arm		Position, ArmRrCmPxz	$G_{A r m R r}$ with respect to $O_{\text {ArmRr }}$, along $i_{A r m R r}$ and $k_{A r m R r}$, respectively
		Length, ArmRrLen	ArmRrLen
Wheels	Front	Radius, WhlFrR	WhlFrR
	Rear	Radius, WhlRrR	WhlRrR
Suspension	Front	Equilibrium length, FrkLwL0	d_{f}
	Rear	Equilibrium angle, ShkRrAng0	$\theta_{\text {Frm }}$

Input Signals

You can use these block parameters to create additional input ports. This table summarizes the settings.

Input Signals Pane Parameter	Input Port	Description
External forces	FExt	External longitudinal and vertical forces applied at equivalent rider and motorcycle center of mass (CM).
External moments	MExt	External moment about equivalent rider and motorcycle CM, for example, moment due to rider physical motion.
External front wheel moment	MWhlF	External moment at the front wheel $G_{\text {WhlFr, for }}$ example, wheel motors and external intermittent friction-related disturbances.
External rear wheel moment	MWhlR	External moment at the rear wheel $G_{\text {WhlRr, }}$ for example, wheel motors and external intermittent friction-related disturbances.
Grade angle	Grade	Road grade angle.
Wind velocity	WindXYZ	Wind speed.
Ambient temperature	Temp	Ambient air temperature. Consider this option if you want to vary the temperature during run- time.

Suspension System

Use the Suspension type parameter to specify the type of suspension.

Setting	Description
Simple	Block models the suspension force and moment as a spring- damper system: - - Suspension force at the upper fork
User-defined	Input the suspension force and moment: - \quad FSuspF - Suspension force at the upper fork - MSuspR - Suspension moment at the rear arm

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the motorcycle, the block uses the net relative airspeed.

Power Accounting

The block accounts for the power transferred, not transferred, and stored.

Bus Signal			Description
PwrInfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrFxExt	Mechanical power from longitudinal external force
		PwrFzExt	Mechanical power from vertical external force
		PwrMyExt	Mechanical power from external pitch moment
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrFxDrag	Mechanical power loss from longitudinal drag force
		PwrFzDrag	Mechanical power loss from vertical lift
		PwrMyDrag	Mechanical power loss from pitch moment drag
	PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredGrvty	Rate change in gravitational potential energy
		PwrStoredxdot	Rate of change of longitudinal kinetic energy
		PwrStoredzdot	Rate of change of vertical kinetic energy

Bus Signal		PwrStoredq	Description
		Rate of change of rotational pitch kinetic energy	
	PwrStoredFsFzSprng	Stored spring energy from front suspension	
		PwrStoredFsRzSprng	Stored spring energy from rear suspension

Ports

Input

FCpF - Longitudinal and vertical forces at front wheel contact patch vector

Longitudinal and vertical forces at front wheel contact patch $O_{C P F}$, along $i_{C P F}$ and $k_{C P F}$, in N. Signal vector dimensions are [1×2] or [2×1].

FCpR - Longitudinal and vertical forces at rear wheel contact patch vector

Longitudinal and vertical forces at rear wheel contact patch $O_{C p R}$, along $i_{C p R}$ and $k_{C p R}$, in N. Signal vector dimensions are [1×2] or [2×1].

MDrvArmR - Drive chain moment at rear arm

scalar
Drive chain moment at rear arm $O_{\text {ArmRr, }}$, about $j_{A r m R r}$, in $\mathrm{N} \cdot \mathrm{m}$.

MDrvFrm - Drive chain moment at frame scalar

Drive chain moment at the frame $O_{\text {Frm }}$, about $j_{F r m}$, in $\mathrm{N} \cdot \mathrm{m}$.

FExt - External longitudinal and vertical forces at frame

 vectorExternal longitudinal and vertical forces applied at equivalent rider and motorcycle center of mass (CM), along $i_{F r m}$ and $k_{F r m}$ in N. Signal vector dimensions are [1×2] or [2×1].

Dependencies

To create this port, select External forces.
MExt - External moment about frame
scalar
External moment about equivalent rider and motorcycle $C M, j_{\text {Frm }}$, for example, moment due to rider physical motion, in N•m.

Dependencies

To create this port, select External moments.

MBrkF - Brake moment at front wheel
 scalar

Brake moment at the front wheel $G_{\text {WhlFr }}$, about $j_{\text {WhlFr }}$, in $\mathrm{N} \cdot \mathrm{m}$.

MBrkR - Brake moment at rear wheel
 scalar

Brake moment at the rear wheel $G_{W h R r}$, about $j_{W h l R r}$, in $\mathrm{N} \cdot \mathrm{m}$.
MWhlF - External moment at front wheel scalar

External moment at the front wheel $G_{\text {WhlFr }}$ in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select External front wheel moment.
MWhlR - External moment at rear wheel
scalar
External moment at the rear wheel $G_{\text {WhlRr }}$, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, select External rear wheel moment.

FSuspF - External suspension force at upper fork

 scalarExternal suspension force at upper fork $O_{\text {FrkUp }}$, along $k_{\text {FrkUp }}$, in N .

Dependencies

To create this port, set Suspension type to User-defined.
MSuspR - External suspension moment at rear arm scalar

External suspension force at upper fork $O_{A r m R r}$, about $j_{A r m R r}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, set Suspension type to User-defined.
Grade - Road grade angle
scalar
Road grade angle, γ, in deg.

Dependencies

To create this port, select Grade angle.
WindXYZ - Wind speed
array

Wind speed, W_{X}, W_{Y}, W_{Z} along earth-fixed X-, Y-, and Z-axes, in m / s. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To create this port, select Wind velocity.

Temp - Ambient air temperature

scalar
Ambient air temperature, $T_{\text {air }}$, in K. Considering this option if you want to vary the temperature during run-time.

Dependencies

To create this port, select Ambient temperature.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal					Signal	Units
Geom				PosOrgInert	Main frame position along the earth-fixed axes	m
				PosFwBdy	Front wheel center position relative to initial vehicle-fixed wheel position, along the vehicle Z-down X-, Y-, and Z-axes	m
				PosRwBdy	Rear wheel center position relative to initial vehicle-fixed wheel position, along the vehicle Z-down X-, Y-, and Z-axes	m
				AngOrgInert	Main frame rotation about the earth-fixed axes	rad
Frame	Inert	Cg	Disp	X	Vehicle CM displacement along the earth-fixed X axis	m
				Y	Vehicle CM displacement along the earth-fixed Y axis	m
				Z	Vehicle CM displacement along the earth-fixed Zaxis	m
			Vel	Xdot	Vehicle CM velocity along the earth-fixed X-axis	m/s

Signal				Signal	Units
			Mz	Drag moment on vehicle CM about the road-fixed z-axis	$\mathrm{N} \cdot \mathrm{m}$
		Ext	Mx	External moment on vehicle CG about the road-fixed x-axis	$\mathrm{N} \cdot \mathrm{m}$
			My	External moment on vehicle CG about the road-fixed y-axis	$\mathrm{N} \cdot \mathrm{m}$
			Mz	External moment on vehicle CG about the road-fixed z-axis	$\mathrm{N} \cdot \mathrm{m}$
	Pwr	PwrExt		Applied external power	W
		Drag		Power loss due to drag	W
PwrInfo	Pwr Trnsfrd	PwrFxExt		Mechanical power from longitudinal external force	W
		PwrFzExt		Mechanical power from vertical external force	W
		PwrMyExt		Mechanical power from external pitch moment	W
	PwrNot Trnsfrd	PwrFxDrag		Mechanical power loss from longitudinal drag force	W
		PwrFzDrag		Mechanical power loss from vertical lift force	W
		PwrMyDrag		Mechanical power loss from pitch moment drag	W
	PwrStored	PwrStoredGrvty		Rate change in gravitational potential energy	W
		PwrStoredxdot		Rate of change of longitudinal kinetic energy	W
		PwrStoredzdot		Rate of change of vertical kinetic energy	W
		PwrStoredq		Rate of change of rotational pitch kinetic energy	W
Genrl	Vel	xdot		Vehicle CM velocity along the road-fixed x-axis	m/s
		zdot		Vehicle CM velocity along the road-fixed z-axis	m / s
	Ang	thetafrm		Pitch angle of main frame	rad

Signal						Signal	Units
		AngVel	thetafrmdot			Main frame rotational velocity	rad/s
		AngAcc	thetafrmddot			Main frame rotational acceleration	$\mathrm{rad} / \mathrm{s}^{2}$
Whl	Genrl	Frnt	Cp	Disp	x	Front wheel contact patch position along the roadfixed x-axis	m
					z	Front wheel contact patch position along the roadfixed z-axis	m
				Vel	xdot	Front wheel contact patch velocity along the roadfixed x-axis	m/s
					zdot	Front wheel contact patch velocity along the roadfixed z-axis	m / s
				Acc	xddot	Front wheel contact patch acceleration along the road-fixed x-axis	$\mathrm{m} / \mathrm{s}^{2}$
					zddot	Front wheel contact patch acceleration along the road-fixed z-axis	$\mathrm{m} / \mathrm{s}^{2}$
			Axl	Vel	xdot	Front wheel axle velocity along the road-fixed x-axis	m / s
					zdot	Front wheel axle velocity along the road-fixed z-axis	m / s
		Rear	Cp	Disp	x	Rear wheel contact patch position along the roadfixed x-axis	m
					z	Rear wheel contact patch position along the roadfixed z-axis	m
				Vel	xdot	Rear wheel contact patch velocity along the roadfixed x-axis	m/s
					zdot	Rear wheel contact patch velocity along the roadfixed z-axis	m/s
				Acc	xddot	Rear wheel contact patch acceleration along the road-fixed x-axis	$\mathrm{m} / \mathrm{s}^{2}$
					zddot	Rear wheel contact patch acceleration along the road-fixed z-axis	$\mathrm{m} / \mathrm{s}^{2}$

VCpF - Longitudinal, lateral, and vertical velocity at front wheel contact patch vector

Longitudinal, lateral, and vertical velocity at front wheel contact patch $O_{C P F}$, along $i_{C P F}$ and $k_{C P F}$, in m / s. Signal vector dimensions are [1x3] or [3x1]. The lateral component is set to 0 .

PCpF - Longitudinal, lateral, and vertical position at front wheel contact patch vector

Longitudinal, lateral, and vertical position at front wheel contact patch $O_{C P F}$, along $i_{C p F}$ and $k_{C p F}$, in m . Signal vector dimensions are [1×3] or [3×1]. The lateral component is set to 0 .

VCpR - Longitudinal, lateral, and vertical velocity at rear wheel contact patch vector

Longitudinal,lateral, and vertical velocity at rear wheel contact patch $O_{C P R}$, along $i_{C P R}$ and $k_{C P R}$, in m / s. Signal vector dimensions are [1×3] or [3×1]. The lateral component is set to 0 .

PCPR - Longitudinal, lateral, and vertical position at rear wheel contact patch vector

Longitudinal, lateral, and vertical position at rear wheel contact patch $O_{C p R}$, along $i_{C p R}$, and $k_{C p R}$, in m . Signal vector dimensions are [1×3] or [3×1]. The lateral component is set to 0 .

ThetaFrm - Main frame pitch angle

scalar
Main frame pitch angle, $\Theta_{f r m}$, in rad.
ThetaArmR - Rear arm pitch angle
scalar
Rear arm pitch angle, $\theta_{r a}$ in rad.

Parameters

Options

Suspension type - Type of suspension

Simple (default) | User-defined
Use the Suspension type parameter to specify the type of suspension.

Setting	Description
Simple	Block models the suspension force and moment as a spring- damper system: - - Suspension force at the upper fork - Suspension moment at the rear arm
User-defined	Input the suspension force and moment: - FSuspF - Suspension force at the upper fork - MSuspR - Suspension moment at the rear arm

Input signals

External forces - FExt input port

off (default) | on
Specify to create input port FExt.
External moments - MExt input port
off (default) | on
Specify to create input port MExt.
External front wheel moment - MWhlF input port
off (default) | on
Specify to create input port MWhlF. Consider using this port to input external moments such as wheel motors and external intermittent friction-related disturbances.

External rear wheel moment - MWhlR input port
 off (default)| on

Specify to create input port MWhlR. Consider using this port to input external moments such as wheel motors and external intermittent friction-related disturbances.

Grade angle - Grade input port on (default) | off

Specify to create input port Grade.
Wind velocity - WindXYZ input port
on (default) | off
Specify to create input port WindXYZ.
Ambient temperature - Temp input port off (default) | on

Specify to create input port Temp.

Layout

Use the parameters in this table to specify the geometric layout of your motorcycle.

Parameter			Variable in Figure $O_{C P R}$ with respect to road-fixed coordinate system, along x
Initial conditions	Position	Rear contact patch longitudinal coordinate, CpRrX0	
		Rear contact patch vertical coordinate, CpRrZ0	$O_{C p R}$ with respect to road-fixed coordinate system, along z
		Pitch angle of rear arm, ArmRrAng0	$\theta_{\text {ra }}$
		Pitch angle of main frame, FrmAng0	$\theta_{\text {Frm }}$
		Fork length, FrkFrL0	d_{f}

Parameter			Variable in Figure
Frame		Center of mass location, FrmCmPxz	$G_{F r m}$ with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{F r m}$, respectively
		Length, FrmLen	FrmLen
Rider		Center of mass location, RdrCmPxz	$G_{\text {Rdr }}$ with respect to $O_{\text {Frm }}$, along $i_{\text {Frm }}$ and $k_{F r m}$, respectively
Front Fork	Upper	Position, FrkUpCmPxz	$G_{F r k U p}$ with respect to $O_{F r k U p}$, along $i_{F r k U_{p}}$ and $k_{F r k U_{p}}$, respectively
		Offset, FrkOfs	FrkOfs
	Lower	Position, FrkLwCmPxz	$G_{\text {FrkLw }}$ with respect to $O_{\text {FrkLw }}$, along $i_{F r k L w}$ and $k_{F r k L w}$, respectively
Rear Arm		Position, ArmRrCmPxz	$G_{\text {ArmRr }}$ with respect to $O_{\text {ArmRr }}$, along $i_{\text {ArmRr }}$ and $k_{\text {ArmRr }}$, respectively
		Length, ArmRrLen	ArmRrLen
Wheels	Front	Radius, WhlFrR	WhlFrR
	Rear	Radius, WhlRrR	WhlRrR
Suspension	Front	Equilibrium length, FrkLwL0	d_{f}
	Rear	Equilibrium angle, ShkRrAng0	$\theta_{\text {Frm }}$

Frame

Center of mass location, FrmCmPxz - Frame location
[0.255, -0.02] (default)|vector
Center of mass location of the frame, $G_{F r m}$. Specified as a vector with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{\text {Frm }}$, respectively.

Mass, FrmMass - Frame mass

223 (default)| scalar
Frame mass, FrmMass, in kg.

Mass moment of inertia, FrmIyy - Frame inertia

26.2 (default) | scalar

Mass moment of inertia, FrmIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Length, FrmLen - Frame length

0.730 (default) | scalar

Length of the frame, FrmLen, in m.

Rider

Center of mass location, RdrCmPxz - Rider location
[0.275, -0.61] (default)|vector
Center of mass location of the rider, $G_{R d r}$. Specified as a vector with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{\text {Frm }}$, respectively.

Mass, RdrMass - Rider mass

78 (default) | scalar
Rider mass, RdrMass, in kg.

Mass moment of inertia, RdrIyy - Rider inertia
 26.2 (default) | scalar

Rider mass moment of inertia, RdrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Front Fork - Upper
Position, FrkUpCmPxz - Upper fork location
[0.023, -0.098] (default) | vector
Center of mass location of the upper fork, $G_{F r k U p}$. Specified as a vector with respect to $O_{F r k U p}$, along $i_{F r k U_{p}}$ and $k_{F r k U p}$, respectively.

Mass, FrkUpMass - Upper fork mass

8.8 (default) | scalar

Upper fork mass, FrkUpMass, in kg.

Mass moment of inertia, FrmIy - Upper fork inertia 0.14 (default) | scalar

Upper fork mass moment of inertia, FrkUpIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Offset, FrkOfs - Upper fork offset

0.034 (default) | scalar

Upper fork offset, FrkOfs, in m.

Front Fork - Lower

Position, FrkLwCmPxz - Lower fork location
[-0.029, -0.189] (default)|vector
Center of mass location of the lower fork, $G_{F r k L w}$. Specified as a vector with respect to $O_{\text {FrkLw, }}$ along $i_{\text {FrkLw }}$ and $k_{\text {FrkLw }}$, respectively.

Mass, FrkLwMass - Lower fork mass

7.0 (default) | scalar

Lower fork mass, FrkLwMass, in kg.
Mass moment of inertia, FrkLwIyy - Lower fork inertia 0.18 (default) | scalar

Lower fork mass moment of inertia, FrkLwIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Rear Arm

Position, ArmRrCmPxz - Rear arm location

[0.275, -0.052] (default)| vector

Center of mass location of the rear arm, $G_{A r m R r}$. Specified as a vector with respect to $O_{A r m R r}$, along $i_{\text {ArmRr }}$ and $k_{\text {ArmRr }}$, respectively.

Mass, ArmRrMass - Rear arm mass
10 (default) | scalar
Rear arm mass, ArmRrMass, in kg.
Mass moment of inertia, ArmRrIyy - Rear arm inertia 0.8 (default) | scalar

Rear arm mass moment of inertia, ArmRrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Length, ArmRrLen - Rear arm length

0.535 (default) | scalar

Rear arm length, ArmRrLen, in m.

```
Wheels - Front
```

Mass, WhlFrMass - Front wheel mass
12 (default) | scalar
Front wheel mass, WhlFrMass, in kg.
Radius, WhlFrR - Front wheel radius
0.3 (default) | scalar

Front wheel radius, WhlFrR, in m.

Wheels - Rear

Mass, WhlRrMass - Rear wheel mass
16.2 (default) | scalar

Rear wheel mass, WhlRrMass, in kg.
Radius, WhlRrR - Rear wheel radius
0.33 (default) | scalar

Rear wheel radius, WhlRrR, in m.

Suspension - Front

Stiffness, SuspFrK - Front suspension stiffness
25e3 (default) | scalar
Front suspension stiffness at $O_{F r k U p}$, along $k_{F r k U p}$, in N / m.
Damping, SuspFrC - Front suspension damping
1250 (default) | scalar
Front suspension damping, at $O_{F r k U p}$, along $k_{F r k U p}$, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$.
Equilibrium length, FrkLwL0 - Front suspension equilibrium length 0.473 (default) | scalar

Front suspension equilibrium length, d_{f} in m .
Suspension - Rear
Stiffness, SuspRrK - Rear arm suspension stiffness
1500 (default) | scalar
Rear arm suspension stiffness at $O_{\text {ArmRr, }}$ about $j_{\text {ArmRr }}$, in $\mathrm{N} / \mathrm{rad}$.
Damping, SuspRrC - Rear arm suspension damping
150 (default) | scalar
Rear arm suspension damping at $O_{\text {ArmRr, }}$, about $j_{A r m R r}$, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{rad}$.
Equilibrium angle, ShkRrAng0 - Rear suspension equilibrium angle
0 (default) | scalar
Rear suspension equilibrium angle, $\theta_{\text {Frm }}$, in rad.

Aerodynamic

Longitudinal drag area, Af - Area
2 (default) | scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in m^{2}.

Longitudinal drag coefficient, Cd - Drag
. 2 (default)| scalar
Air drag coefficient, C_{d}, dimensionless.
Longitudinal lift coefficient, Cl - Lift
. 1 (default) | scalar
Air lift coefficient, C_{l}, dimensionless.

Longitudinal drag pitch moment, Cpm — Pitch drag

. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$, dimensionless.
Pitch moment length, Lcpm - Pitch drag
2 (default) | scalar
Pitch moment length, Lcpm, in m.

Environment

Gravitational acceleration, g - Gravity
9.80665 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{2}$.
Absolute air pressure, Pabs - Pressure
101325 (default) | scalar

Environmental air absolute pressure, $P_{a b s}$, in Pa.
Air temperature, Tair - Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$, in K.

Dependencies

To enable this parameter, clear Ambient temperature.
Initial conditions
Position
Rear contact patch longitudinal coordinate, CpRrX0 - Longitudinal coordinate 0 (default) | scalar

Rear contact patch longitudinal coordinate, $O_{C p R}$, with respect to road-fixed coordinate system, along x, in m.

Rear contact patch vertical coordinate, CpRrZ0 - Vertical coordinate

0 (default) | scalar
Rear contact patch vertical coordinate, $O_{C p R}$, with respect to road-fixed coordinate system, along z, in m.

Pitch angle of rear arm, ArmRrAng0 - Rear arm angle 0.0590379 (default)|scalar

Pitch angle of rear arm, $\theta_{r a}$ in rad.
Pitch angle of main frame, FrmAng0 - Angle length
0.377024 (default) | scalar

Pitch angle of main frame, $\theta_{\text {Frm }}$ in rad.

Fork length, FrkFrL0 - Fork length
 0.4262193 (default) | scalar

Fork length, d_{f}, in m.

Velocity

Longitudinal velocity of rear contact patch - Longitudinal velocity
0 (default) | scalar
Rear contact patch longitudinal coordinate, $\dot{O}_{C p R}$, with respect to road-fixed coordinate system, along x, in m / s.

```
Vertical velocity of rear contact patch, CpRrVz0 - Vertical velocity
```

0 (default) | scalar

Vertical velocity of rear contact patch, $\dot{O}_{C p R}$, with respect to road-fixed coordinate system, along z, in m / s.

Pitch rate of rear arm, ArmRrAngV0 - Pitch rate 0 (default) | scalar

Pitch rate of rear arm, $\dot{\theta}_{r a}$, in rad/s.
Pitch rate of main frame, FrmAngV0 - Pitch rate 0 (default) | scalar

Pitch rate of main frame, $\dot{\theta}_{\text {Frm }}$, in rad/s.

Lower fork deformation velocity, FrkLwV0 - Deformation velocity

0 (default) | scalar
Lower fork deformation velocity, \dot{d}_{f}, in m / s.

Coordinate Offsets

Longitudinal offset, longOff - Longitudinal offset
0 (default) | scalar
Vehicle main frame offset along the earth-fixed X-axis, in m.
Lateral offset, latOff - Lateral offset
0 (default) | scalar
Vehicle main frame offset along the earth-fixed Y-axis, in m.

Vertical offset, vertOff - Vertical offset
 0 (default) | scalar

Vehicle main frame offset along the earth-fixed Z-axis, in m.
Roll offset, pitchOff - Roll offset
0 (default) | scalar
Vehicle main frame offset about the earth-fixed X-axis, in rad.

Pitch offset, pitchOff - Pitch offset

0 (default) | scalar
Vehicle main frame offset about the earth-fixed Y-axis, in rad.
Yaw offset, pitchOff - Yaw offset
0 (default) | scalar
Vehicle main frame offset about the earth-fixed Z-axis, in rad.

References

[1] Giner, David Moreno. "Symbolic-Numeric Tools for the Analysis of Motorcycle Dynamics.
Development of a Virtual Rider for Motorcycles Based on Model Predictive Control." PhD diss., Universidad Miguel Hernández de Elche, 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Motorcycle Chain
Topics
"Conventional Vehicle Spark-Ignition Engine Fuel Economy and Emissions"

Introduced in R2021b

Energy Storage Blocks

Datasheet Battery

Lithium-ion, lithium-polymer, or lead-acid battery
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Datasheet Battery

Description

The Datasheet Battery block implements a lithium-ion, lithium-polymer, or lead-acid battery that you can parameterize using manufacturer data. To create the open-circuit voltage and internal resistance parameters that you need for the block, use the manufacturer discharge characteristics by temperature data. For an example, see "Generate Parameter Data for Datasheet Battery Block".

To determine the battery output voltage, the block uses lookup tables for the battery open-circuit voltage and the internal resistance. The lookup tables are functions of the state-of charge (SOC) and battery temperature, characterizing the battery performance at various operating points:

$$
\begin{aligned}
& E_{m}=f(S O C) \\
& R_{\text {int }}=f(T, S O C)
\end{aligned}
$$

To calculate the voltage, the block implements these equations.

$$
\begin{aligned}
& V_{T}=E_{m}+I_{\text {batt }} R_{\text {int }} \\
& I_{\text {batt }}=\frac{I_{\text {in }}}{N_{p}} \\
& V_{\text {out }}=\left\{\begin{array}{lr}
N_{S} V_{T} & \text { unfiltered } \\
\frac{V_{\text {out }}}{\tau s+1} & \text { filtered }
\end{array}\right. \\
& S O C=\frac{1}{C a p_{\text {batt }}} \int_{0}^{t} I_{\text {batt }} d t \\
& L d_{\text {AmpHr }}=\int_{0}^{t} I_{\text {batt }} d t
\end{aligned}
$$

Positive current indicates battery discharge. Negative current indicates battery charge.

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrLdBatt	Battery network power	$\begin{aligned} & V_{\text {batt }}=V_{\text {out }} \text { qR } \frac{V_{\text {out }}}{\tau s+1} \\ & P_{\text {batt }}=-V_{\text {batt }} I_{\text {batt }} \\ & P_{\text {LdBatt }}=-P_{\text {batt }} \end{aligned}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrLossBatt	Battery network power loss	$\begin{aligned} & P_{\text {LossBatt }}= \\ & -N_{p} N_{S} I_{\text {batt }} 2 R_{\text {ipt }} \end{aligned}$
	PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredBatt	Battery network power stored	$P_{\text {StoredBatt }}$ $=P_{\text {Batt }}$ $+P_{\text {LossBatt }}$

The equations use these variables.

SOC	State-of-charge
E_{m}	Battery open-circuit voltage
$I_{\text {batt }}$	Per module battery current
$P_{\text {LdBatt }}$	Battery network power
$P_{\text {batt }}$	Battery power
$P_{\text {LossBatt }}$	Battery network power loss
$P_{\text {StoredBatt }}$	Battery network power stored
$I_{\text {in }}$	Combined current flowing from the battery network
$R_{\text {int }}$	Battery internal resistance
N_{s}	Number of cells in series
N_{p}	Number of cells in parallel
$V_{\text {out }}, V_{\text {batt }}$	Combined voltage of the battery network
V_{T}	Per module battery voltage
$C a p_{\text {batt }}$	Battery capacity
$L d_{A m p H r}$	Battery energy

Ports

Inputs

CapInit - Battery capacity

scalar
Rated battery capacity at the nominal temperature, $C a p_{\text {batt, }}$ in Ah.

Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr - Battery load current

scalar
Combined current flowing from the battery network, $I_{i n}$, in A.

BattTemp - Battery temperature

scalar
Temperature measured at the battery housing, T, in K .

Output

Info - Bus signal

bus
Bus signal containing these block calculations.

Signal			Description	Variable	Units
BattCurr			Combined current flowing from the battery network	$I_{\text {batt }}$	A
BattAmpHr			Battery energy	$L d_{\text {AmpHr }}$	A*h
BattSoc			State-of-charge capacity	SOC	NA
BattVolt			Combined voltage of the battery network	$V_{\text {out }}$	V
BattPwr			Battery network power	$P_{\text {batt }}$	W
PwrInfo	PwrTrnsfrd	PwrLdBatt	Battery network power	$P_{\text {LdBatt }}$	W
	PwrNotTrnsf rd	PwrLossBatt	Battery network power loss	$P_{\text {LossBatt }}$	W
	PwrStored	PwrStoredBatt	Battery network power stored	$P_{\text {StoredBatt }}$	W

BattVolt - Battery output voltage

scalar
Combined voltage of the battery network, $V_{\text {out }}$, in V.

Parameters

Block Options

Initial battery capacity - Input or parameter

Parameter (default) | External Input
Initial battery capacity, $C a p_{\text {batt }}$, in Ah.

Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage - Unfiltered or Filter

Unfiltered (default) | Filtered
Select Filtered to apply a first-order filter to the output batter voltage.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Rated capacity at nominal temperature, BattChargeMax - Constant
100 (default) | scalar
Rated battery capacity at the nominal temperature, in Ah.
Open circuit voltage table data, Em - 1-D lookup table
1-by-P matrix
Open-circuit voltage data curve, E_{m}, as a function of the discharged capacity for P operating points, in V.

Open circuit voltage breakpoints 1, CapLUTBp - Breakpoints

1-by-P matrix
Discharge capacity breakpoints for P operating points, dimensionless.
Although this parameter is the same as the Battery capacity breakpoints 2, CapSOCBp parameter, the block uses unique parameters for calibration flexibility.

Internal resistance table data, RInt - 2-D lookup table
 N-by-M matrix

Internal resistance map, $R_{\text {int }}$, as a function of N temperatures and M SOCs, in ohms.

Battery temperature breakpoints 1, BattTempBp - Breakpoints

```
[243.1 253.1 263.1 273.1 283.1 298.1 313.1] (default)| 1-by-N matrix
```

Battery temperature breakpoints for N temperatures, in K .

Battery capacity breakpoints 2, CapSOCBp - Breakpoints

[0 0.2 0.4 0.6 0.8 1] (default)| 1-by-M matrix
Battery capacity breakpoints for M SOCs, dimensionless.

Although this parameter is the same as the Open circuit voltage breakpoints 1, CapLUTBp parameter, the block uses unique parameters for calibration flexibility.

Number of cells in series, Ns - Integer

1 (default) | scalar
Number of cells in series, dimensionless, N_{s}.

```
Number of cells in parallel, Np - Integer
```

1 (default) | scalar
Number of cells in parallel, dimensionless, N_{p}.

```
Initial battery capacity, BattCapInit - Capacity
100 (default) | scalar
```

Initial battery capacity, $C a p_{\text {batt }}$ in Ah.
Dependencies

Block Parameter Initial battery capacity Option	Creates
External Input	Input port CapInit
Parameter	Parameter Initial battery capacity, BattCapInit

Output battery voltage time constant, Tc - Filter time constant

 1/1000 (default) | scalarOutput battery voltage time constant, T_{c}, in s . Used in a first-order voltage filter.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value - Filter initial voltage

4.221 (default) | scalar

Output battery voltage initial value, $V_{\text {init }}$, in V. Used in a first-order voltage filter.

Dependencies

Setting Output battery voltage parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

References

[1] Arrhenius, S.A. "Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte." Journal of Physical Chemistry. 4 (1889): 96-116.
[2] Connors, K. Chemical Kinetics. New York: VCH Publishers, 1990.
[3] Ji, Yan, Yancheng Zhang, and Chao-Yang Wang. Journal of the Electrochemical Society. Volume 160, Issue 4 (2013), A636-A649.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Estimation Equivalent Circuit Battery | Equivalent Circuit Battery

Topics

"Generate Parameter Data for Datasheet Battery Block" Battery Modeling

Introduced in R2017a

Estimation Equivalent Circuit Battery

Resistor-capacitor (RC) circuit battery that creates lookup tables

Powertrain Blockset / Energy Storage and Auxiliary Drive / Network Battery

Description

The Estimation Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery model that you can use to create lookup tables for the Equivalent Circuit Battery block. The lookup tables are functions of the state-of-charge (SOC).

The Estimation Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC. To acquire the SOC, the block integrates the charge and discharge currents.

Specifically, the block implements these parameters as lookup tables that are functions of the SOC:

- Series resistance, $R_{o}=f(S O C)$
- Battery open-circuit voltage, $E_{m}=f(S O C)$
- Network resistance, $R_{n}=\mathrm{f}(S O C)$
- Network capacitance, $C_{n}=f(S O C)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$
\begin{aligned}
& V_{T}=E_{m}-I_{\text {batt }} R_{o}-\sum_{1}^{n} V_{n} \\
& V_{n}=\int_{0}^{t}\left[\frac{I_{\text {batt }}}{C_{n}}-\frac{V_{n}}{R_{n} C_{n}}\right] d t \\
& \text { SOC }=\frac{-1}{C_{\text {batt }}} \int_{0}^{t} I_{\text {batt }} d t \\
& I_{\text {batt }}=I_{\text {in }} \\
& V_{\text {out }}=V_{T}
\end{aligned}
$$

Positive current indicates battery discharge. Negative current indicates battery charge.
The equations use these variables.
SOC
State-of-charge
$E_{m} \quad$ Battery open-circuit voltage

$I_{\text {batt }}$	Per module battery current
$I_{i n}$	Combined current flowing from the battery network
R_{o}	Series resistance
n	Number of RC pairs in series
$V_{\text {out }}, V_{T}$	Combined voltage of the battery network
V_{n}	Voltage for n-th RC pair
R_{n}	Resistance for n-th RC pair
C_{n}	Capacitance for n-th RC pair
$C_{\text {batt }}$	Battery capacity

Ports

Inputs
BattCurr - Battery network current
scalar
Combined current flowing from the battery network, $I_{i n}$, in A.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Variable	Units
CapVolt	Voltage for n-th RC pair	V_{n}	V

BattVolt - Battery output voltage
 scalar

Combined voltage of the battery network, $V_{\text {out }}$, in V .
BattSoc - Battery SOC
scalar
Battery state-of-charge, SOC.

Parameters

Core Battery

Number of series RC pairs - RC pairs
1 (default) | 2 | 3 | 4 | 5
Number of series RC pairs. For lithium, typically 1 or 2.
Open circuit voltage Em table data, Em - Voltage table
[3.8 3.8 3.8 3.8 3.8 3.8] (default)|array

Open-circuit voltage table, E_{m}, in V. Function of SOC.

```
Series resistance table data, R0 - Resistance
[0.01 0.01 0.01 0.01 0.01 0.01] (default)|array
Series resistance table, \(R_{0}\), in ohms. Function of SOC.
```

```
State of charge breakpoints, SOC_BP - SOC breakpoints
```

State of charge breakpoints, SOC_BP - SOC breakpoints
[0 .2 .4 . 6 . % 1] (default)|vector

```

State-of-charge (SOC) breakpoints, dimensionless.

\section*{Battery capacity, BattCap - Capacity}
27.6250 (default) | scalar

Battery capacity, \(C_{\text {batt, }}\) in Ah.

\section*{Initial battery capacity, BattCapInit - Capacity}
27.6250 (default) | scalar

Initial battery capacity, \(C_{\text {batto }}\), in Ah.

\section*{Initial capacitor voltage, InitialCapVoltage - Voltage 0 (default) | vector}

Initial capacitor voltage, in V. Dimension of vector must equal the Number of series RC pairs.

\section*{R and C Table Data}

Network resistance table data, Rn - Lookup table
[0.005 0.005 0.005 0.005 0.005 0.005] (default)|array
Network resistance table data for \(n\)-th RC pair, as a function of SOC, in ohms.

\section*{Network capacitance table data, Cn - Lookup table \\ [10000 10000100001000010000 10000] (default)|array}

Network capacitance table data for \(n\)-th RC pair, as a function of SOC, in F.

\section*{Cell Limits}

Upper Integrator Voltage Limit, Vu - Maximum
Inf (default) | scalar
Upper voltage limit, in V.

\section*{Lower Integrator Voltage Limit, VI - Minimum}

Inf (default) | scalar
Lower voltage limit, in V.

\section*{References}
[1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi:10.4271/2015-01-0252, 4(2):2015.
[2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
[3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." IEEE \({ }^{\oplus}\) International Electric Vehicle Conference. March 2012, pp. 1-8.
[4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
[5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi:10.4271/2007-01-0778, 2007.
[6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi:10.4271/2009-01-1381, 2009.
[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Datasheet Battery | Equivalent Circuit Battery
Topics
"Generate Parameter Data for Equivalent Circuit Battery Block"
Battery Modeling

\section*{Introduced in R2017a}

\section*{Equivalent Circuit Battery}

Resistor-capacitor (RC) circuit battery
Library:
Powertrain Blockset / Energy Storage and Auxiliary Drive / Network Battery


\section*{Description}

The Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery that you can parameterize using equivalent circuit modeling (ECM). To simulate the state-of-charge (SOC) and terminal voltage, the block uses load current and internal core temperature.

The Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC and battery temperature. You can use the Estimation Equivalent Circuit Battery block to help create the lookup tables.

Specifically, the Equivalent Circuit Battery block implements these parameters as lookup tables that are functions of the SOC and battery temperature:
- Series resistance, \(R_{o}=f(S O C, T)\)
- Battery open-circuit voltage, \(E_{m}=f(S O C, T)\)
- Battery capacity, \(C_{\text {batt }}=\mathrm{f}(T)\)
- Network resistance, \(R_{n}=f(S O C, T)\)
- Network capacitance, \(C_{n}=\mathrm{f}(S O C, T)\)

To calculate the combined voltage of the battery network, the block uses these equations.
\[
\begin{aligned}
& V_{T}=E_{m}-I_{\text {batt }} R_{o}-\sum_{1}^{n} V_{n} \\
& V_{n}=\int_{0}^{t}\left[\frac{I_{\text {batt }}}{C_{n}}-\frac{V_{n}}{R_{n} C_{n}}\right] d t \\
& \text { SOC }=\frac{-1}{C_{\text {batt }}} \int_{0}^{t} I_{\text {batt }} d t \\
& I_{\text {batt }}=\frac{I_{\text {in }}}{N_{p}} \\
& V_{\text {out }}=N_{S} V_{T} \\
& P_{\text {BattLoss }}=I_{\text {batt }}{ }^{2} R_{0}+\sum_{1}^{n} \frac{V_{n}^{2}}{R_{n}} \\
& \text { Ld }_{\text {AmpHr }}=\int_{0}^{t} I_{\text {batt }} d t
\end{aligned}
\]

Positive current indicates battery discharge. Negative current indicates battery charge.

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{3}{*}{PwrIn fo} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrLdBatt & Battery network power & \[
\begin{aligned}
& V_{\text {batt }}=V_{\text {out }} \quad \text { OR } \frac{V_{\text {out }}}{\tau s+1} \\
& P_{\text {batt }}=-V_{\text {batt }} I_{\text {batt }} \\
& P_{\text {LdBatt }} \quad-P_{\text {batt }}
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLossBa
tt & Battery network power loss & \[
\begin{aligned}
& P_{\text {LossBatt }}= \\
& -\left(I_{\text {batt }}{ }^{2} R_{0}+\sum_{1}^{n} \frac{V_{n}^{2}}{R_{n}}\right)
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrStored Batt & Battery network power stored & \[
\begin{aligned}
& P_{\text {StoredBatt }}=P_{\text {Batt }} \\
& +P_{\text {LossBatt }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E_{m}\) & Battery open-circuit voltage \\
\(I_{\text {batt }}\) & Per module battery current \\
\(I_{\text {in }}\) & Combined current flowing from the battery network \\
\(R_{o}\) & Series resistance \\
\(N_{p}\) & Number parallel branches \\
\(N_{p}\) & Number of RC pairs in series \\
\(V_{\text {out }}, V_{T}\) & Combined voltage of the battery network \\
\(V_{n}\) & Voltage for \(n\)-th RC pair \\
\(R_{n}\) & Resistance for \(n\)-th RC pair \\
\(C_{n}\) & Capacitance for \(n\)-th RC pair \\
\(C_{\text {batt }}\) & Battery capacity \\
\(P_{\text {batt }}\) & Battery power \\
\(P_{\text {LossBatt }}\) & Negative of battery network power loss \\
\(P_{\text {BattLoss }}\) & Battery network power loss \\
\(P_{\text {StoredBatt }}\) & Battery network power stored \\
\(P_{\text {LdBatt }}\) & Battery network power \\
\(T\) & Battery temperature
\end{tabular}

\section*{Ports}

Inputs
CapInit - Battery capacity
scalar
Rated battery capacity at the nominal temperature, \(C a p_{\text {batt }}\), in Ah.

\section*{Dependencies}

To create this port, select External Input for the Initial battery capacity parameter.

\section*{BattCurr - Battery network current}
scalar
Combined current flowing from the battery network, \(I_{i n}\), in A.
BattTemp - Battery temperature
scalar
Battery temperature, \(T\), in K .
Output
Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline BattCurr & \begin{tabular}{l} 
Combined current flowing from \\
the battery network
\end{tabular} & \(I_{\text {batt }}\) & A \\
\hline BattAmpHr & Battery energy & \(L d_{\text {AmpHr }}\) & A*h \\
\hline BattSoc & State-of-charge capacity & SOC & NA \\
\hline BattVolt & \begin{tabular}{l} 
Combined voltage of the \\
battery network
\end{tabular} & \(V_{\text {out }}\) & V \\
\hline BattPwr & Battery power & \(P_{\text {batt }}\) & W \\
\hline PwrInfo & PwrTrnsfrd & PwrLdBatt & Battery network power & \(P_{\text {LdBatt }}\) \\
\hline \begin{tabular}{l} 
PwrNotTrnsfr \\
d
\end{tabular} & PwrLossBatt & Battery network power loss & \(P_{\text {LossBatt }}\) & W \\
\hline & PwrStored & \begin{tabular}{l} 
PwrStoredBa \\
tt
\end{tabular} & Battery network power stored & \(P_{\text {StoredBatt }}\) \\
\hline
\end{tabular}

\section*{BattVolt - Battery output voltage}
scalar
Combined voltage of the battery network, \(V_{\text {out }}\), in V .

\section*{Parameters}

\section*{Block Options}

Initial battery capacity - Input or parameter
Parameter (default)|External Input
Initial battery capacity, \(C a p_{\text {batt, }}\), in Ah.

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Block Parameter Initial battery capacity \\
Option
\end{tabular} & Creates \\
\hline External Input & Input port CapInit \\
\hline Parameter & \begin{tabular}{l} 
Parameter Initial battery capacity, \\
BattCapInit
\end{tabular} \\
\hline
\end{tabular}

\section*{Output battery voltage - Unfiltered or Filter}

Unfiltered (default) | Filtered
Select Filtered to apply a first-order filter to the output batter voltage.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

\section*{Core Battery \\ Number of series RC pairs - RC pairs \\ 1 (default) | 2 | 3 | 4 | 5}

Number of series RC pairs. For lithium, typically 1 or 2.
```

Open circuit voltage Em table data, Em - Voltage table
[3.5042 3.5136; 3.5573 3.5646; 3.6009 3.6153; 3.6393 3.6565; 3.6742 3.6889;
3.7121 3.7214; 3.7937 3.8078; 3.8753 3.8945; 3.97 3.9859; 4.0764 4.0821;
4.1924 4.193] (default) | array

```

Open circuit voltage table, \(E_{m}\), in V. Function of SOC and battery temperature.

\section*{Series resistance table data, R0 - Resistance array}

Series resistance table, \(R_{0}\), in ohms. Function of SOC and battery temperature.
State of charge breakpoints, SOC_BP - SOC breakpoints
\(\left[\begin{array}{lllllllll}0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 \\ 0.9 & 1]\end{array}\right.\) (default)|vector
State-of-charge (SOC) breakpoints, dimensionless.
Temperature breakpoints, Temperature_BP - Battery
[293.15 313.15] (default)|vector
Battery temperature breakpoints, K.
```

Battery capacity table, BattCap - Capacity
[28 28] (default)|array

```

Battery capacity, \(C_{\text {batt, }}\), in Ah. Function of battery temperature.
Initial battery capacity, BattCapInit - Capacity
28 (default) | scalar
Initial battery capacity, \(C_{\text {ap }}^{\text {batt }}\), in Ah.

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Block Parameter Initial battery capacity \\
Option
\end{tabular} & Creates \\
\hline External Input & Input port CapInit \\
\hline Parameter & \begin{tabular}{l} 
Parameter Initial battery capacity, \\
BattCapInit
\end{tabular} \\
\hline
\end{tabular}

\section*{Initial capacitor voltage, InitialCapVoltage - Voltage \\ 0 (default) | array}

Initial capacitor voltage, in \(V\). Dimension of vector must equal the Number of series RC pairs.
Output battery voltage time constant, Tc - Filter time constant 1/1000 (default) | scalar

Output battery voltage time constant, \(T_{c}\), in s. Used in a first-order voltage filter.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value, Vinit - Filter initial voltage
4.193 (default) | scalar

Output battery voltage initial value, \(V_{i n i t}\), in V. Used in a first-order voltage filter.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

\section*{R and C Table Data}

Network resistance table data, Rn - Lookup table
[0.010342 0.0012244; 0.0067316 0.0011396; 0.0051156 0.0012661; 0.0043447
\(0.0012265 ; 0.00388260 .0011163 ; 0.00342260 .0009968 ; 0.0033460 .0011458 ;\)
0.0033222 0.001345; 0.0033201 0.0013091; 0.0032886 0.0010986; 0.0028114
0.0010309 ] (default) |array

Network resistance table data for \(n\)-th RC pair, in ohms, as a function of SOC and battery temperature.
```

Network capacitance table data, Cn - Lookup table
[2287.7 11897; 6122 24515; 18460 42098; 20975 44453; 15254 33098; 10440
24492; 13903 32975; 16694 40007; 15784 35937; 12165 26430; 9118 24795] (default)
| array

```

Network capacitance table data for \(n\)-th RC pair, in F, as a function of SOC and battery temperature.

\section*{Cell Limits}

Upper integrator voltage limit, Vu - Maximum
- Inf (default) | scalar

Upper voltage limit, in V.

\section*{Lower integrator voltage limit, VI - Minimum}
- Inf (default) | scalar

Lower voltage limit, in V.

\section*{References}
[1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi:10.4271/2015-01-0252, 4(2):2015.
[2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
[3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." IEEE International Electric Vehicle Conference. March 2012, pp. 1-8.
[4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
[5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi:10.4271/2007-01-0778, 2007.
[6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi:10.4271/2009-01-1381, 2009.
[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Datasheet Battery | Estimation Equivalent Circuit Battery
Topics
"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

\section*{Introduced in R2017a}

\section*{Reduced Lundell Alternator}

Reduced Lundell (claw-pole) alternator with an external voltage regulator
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Alternator


\section*{Description}

The Reduced Lundell Alternator block implements a reduced Lundell (claw-pole) alternator with an external voltage regulator. The back-electromotive force (EMF) voltage is proportional to the input velocity and field current. The motor operates as a source torque to the internal combustion engine.

Use the Reduced Lundell Alternator block:
- To model an automotive electrical system
- In an engine model with a front-end accessory drive (FEAD)

The calculated motor shaft torque is in the opposite direction of the engine speed. You can:
- Tune the external voltage regulator to a desired bandwidth. The stator current and two diode drops reduce the stator voltage.
- Filter the load current to desired bandwidth. The load current has a lower saturation of 0 A .

The Reduced Lundell Alternator block implements equations for the electrical, control, and mechanical systems that use these variables.

\section*{Electrical}

To calculate voltages, the block uses these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Alternator output voltage & \(v_{s}=K_{v} i_{f} \omega-R_{s} i_{s}-2 V_{d}\) \\
\hline Field winding voltage & \(v_{f}=R_{f} i_{f}+L_{f} \frac{d i f}{d t}\) \\
\hline
\end{tabular}

\section*{Control}

The controller assumes no resistance or voltage drop.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Field winding voltage transform & \(V_{f}(s)=R_{f} I_{f}(s)+s L_{f} I_{f}(s)\) \\
\hline Field winding current transform & \(I_{f}(s)=\frac{V_{f}(s)}{\left(R_{f}+s L_{f}\right)}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l} 
Open loop electrical transfer \\
function
\end{tabular} & \(G(s)=\frac{V_{s}(s)}{V_{f}(s)}=\frac{K_{\nu} \omega}{\left(R_{f}+s L_{f}\right)}\) \\
\hline \begin{tabular}{l} 
Open loop voltage regulator \\
transfer function
\end{tabular} & \(G_{C}(s)=\frac{V_{f}(s)}{\operatorname{Vref(s)}}\) \\
\hline Closed loop transfer function & \(T(s)=\frac{G(s) G c(s)}{1+G(s) G c(s)}\) \\
\hline Closed loop controller design & \(T(s)=\frac{1}{\tau s+1} \rightarrow \quad G(s) G c(s)=\frac{1}{\tau s}\) \\
& \(G_{C}(s)=\quad K_{g} \quad\left(K_{p}+\frac{K_{i}}{s}\right)\) \\
& \(G(s) G_{C}(s)=\frac{K_{v} \omega}{\left(R_{f}+s L_{f}\right)} K_{g} \quad\left(K_{p}+\frac{K_{i}}{s}\right)\) \\
& \(K_{p}=L_{f}, K_{i}=R_{f}\), and \(\quad K_{g}=\frac{2 \pi f}{K_{\nu} \omega}\) \\
\hline
\end{tabular}

\section*{Mechanical}

To calculate torques, the block uses these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Electrical torque & \(\tau_{\text {elec }}=\left(K_{v} i_{f} \omega\right) i_{\text {load }}\) \\
\hline Frictional torque & \(\tau_{\text {friction }}=K_{b} \omega\) \\
\hline Windage torque & \(\tau_{\text {windage }}=K_{w} \omega^{2}\) \\
\hline Torque at start & \(\tau_{\text {start }}=K_{c}\) when \(\omega=0\) \\
\hline Motor shaft torque & \(\tau_{\text {mech }}=\tau_{\text {elec }}+\tau_{\text {friction }}+\tau_{\text {windage }}+\tau_{\text {start }}\) \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Bus Signal } & Description & Variable & Equations \\
\hline \begin{tabular}{l} 
PwrIn \\
fo
\end{tabular} & \begin{tabular}{l} 
PwrTrnsfrd - Power \\
transferred between blocks
\end{tabular} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=\quad \omega \tau_{\text {mech }}\) \\
\cline { 4 - 6 } \begin{tabular}{l} 
Positive signals indicate \\
flow into block \\
- \begin{tabular}{l} 
Negative signals indicate \\
flow out of block
\end{tabular}
\end{tabular} & PwrBus & Electrical power & \(P_{\text {bus }}\) & \(P_{\text {bus }}=\quad-\quad v_{s} i_{\text {load }}\) \\
\cline { 2 - 6 }
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Bus Signal & & Description & Variable & Equations \\
\hline \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Motor power loss & \(P_{\text {loss }}\) & \[
\begin{aligned}
& P_{\text {loss }}=-\left(P_{\text {mot }}\right. \\
& \left.+P_{\text {bus }}-P_{\text {ind }}\right)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrInd & Electrical winding loss & \(P_{\text {ind }}\) & \[
P_{\text {ind }}=L_{f} i_{f} \frac{d_{i f}}{d t}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{r e f}\) & Alternator output voltage command \\
\(v_{f}\) & Field winding voltage \\
\(i_{f}\) & Field winding current \\
\(i_{s}\) & Stator winding current \\
\(V_{d}\) & Diode voltage drop \\
\(R_{f}\) & Field winding resistance \\
\(R_{s}\) & Stator winding resistance \\
\(L_{f}\) & Field winding inductance \\
\(K_{v}\) & Voltage constant \\
\(F_{v}\) & Voltage regulator bandwidth \\
\(F_{c}\) & Input current filter bandwidth \\
\(V_{f \text { fax }}\) & Field control voltage upper saturation limit \\
\(V_{f \text { min }}\) & Field control voltage lower saturation limit \\
\(K_{c}\) & Coulomb friction coefficient \\
\(K_{b}\) & Viscous friction coefficient \\
\(K_{w}\) & Windage coefficient \\
\(\omega\) & Motor shaft angular speed \\
\(i_{l o a d}\) & Alternator load current \\
\(v_{s}\) & Alternator output voltage \\
\(\tau_{\text {mech }}, T_{\text {mech }}\) & Motor shaft torque
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{RefVolt - Alternator output voltage command \\ scalar}

Alternator output voltage command, in V.

\section*{AltSpd - Angular speed}
scalar
Motor shaft input angular speed, in rad/s.

\section*{LdCurr - Alternator load current \\ scalar}

Alternator load current, in A.
Do not connect the port to the alternator rated current, which is a constant value. The block uses the alternator load current as the stator winding current, \(i_{s}\), to determine the alternator voltage and motor torque. If you connect the port to the rated alternator current, the block does not model the dynamic effect of load current changes on the voltage and motor torque.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline FldVolt & Field winding voltage & A \\
\hline \multirow{4}{|l|}{ FldFlux } & Field flux & Wb \\
\hline \multirow{4}{*}{ PwrInfo } & PwrTrnsfrd & PwrMtr & Mechanical power \\
\cline { 2 - 5 } & PwrBus & Electrical power & W \\
\cline { 2 - 5 } & \begin{tabular}{l} 
PwrNotTrnsf \\
rd
\end{tabular} & PwrLoss & Motor power loss \\
\cline { 2 - 5 } & PwrStored & PwrInd & Electrical winding loss \\
\hline
\end{tabular}

\section*{AltVolt - Alternator output voltage \\ scalar}

Alternator output voltage, in V.
LdTrq - Motor shaft torque
scalar
Motor shaft torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

Machine Configuration
Voltage constant, Kv - Constant
. 1 (default)| scalar
Voltage constant, in V/rad/s.
Field winding resistance, Rf - Resistance
0.2 (default) | scalar

Field winding resistance, in ohm.
Field winding inductance, Lf - Inductance
0.002 (default)| scalar

Field winding inductance, in H .
Stator winding resistance, Rs - Resistance
0.01 (default)| scalar

Stator winding resistance, in ohm.
Diode voltage drop, Vd - Voltage
0.7 (default) | scalar

Diode voltage drop, in V.
Voltage Regulator
Regulator bandwidth, Fv - Bandwidth
2000 (default) | scalar
The regulator bandwidth, in Hz .
Current filter bandwidth, Fc-Bandwidth
1000 (default) | scalar
The current filter bandwidth, in Hz .
Field voltage max, Vfmax - Maximum field voltage 100 (default) | scalar

The maximum field voltage, in V .
Field voltage min, Vfmin - Minimum field voltage - 100 (default) | scalar

The minimum field voltage, in V.

\section*{Mechanical Losses}

Coulomb friction, Kc - Friction
0 (default) | scalar
Coulomb friction, in \(\mathrm{N} \cdot \mathrm{m}\).

Viscous friction, Kb - Friction
0 (default) | scalar
Viscous friction, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad} / \mathrm{s}\).
Windage, Kw - Windage
0 (default) | scalar
Windage, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}^{2} / \mathrm{s}^{2}\).

\section*{References}
[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Starter

Introduced in R2017a

\section*{Starter}

Starter as a DC motor

\section*{Library: \\ Powertrain Blockset / Energy Storage and Auxiliary Drive / Starter}


\section*{Description}

The Starter block implements a starter assembly as a separately excited DC motor, permanent magnet DC motor, or series connection DC motor. The motor operates as a torque source to an internal combustion engine.

Use the Starter block:
- In an engine model with a front-end accessory drive (FEAD)
- To model engine start and stop scenarios

The Starter block supports only an angular speed input to the DC motor. A load torque input requires engine dynamics.

\section*{Separately Excited DC Motor}

In a separately excited \(D C\) motor, the field winding is connected to a separate source of \(D C\) power.
The relationship between the field winding voltage, field resistance, and field inductance is given by:
\[
V_{f}=L_{f} \frac{d i_{f}}{d t}+R_{f} i_{f}
\]

The counter-electromotive force is a product of the field resistance, mutual inductance, and motor shaft angular speed:
\[
E M F=L_{a} i_{f} L_{a f} \omega
\]

The armature voltage is given by:
\[
V_{a}=L_{a} \frac{d i_{a}}{d t}+R_{a} i_{a}+E M F
\]

The starter motor current load is the sum of the field winding current and armature winding current:
\[
i_{\text {load }}=i_{f}+i_{a}
\]

The starter motor shaft torque is the product of the armature current, field current, and mutual inductance:
\[
T_{\text {mech }}=i_{a} i_{f} L_{a f}
\]

\section*{Permanent Magnet DC Motor}

In a permanent magnet DC motor, the magnets establish the excitation flux, so there is no field current.

The counter-electromotive force is proportional to the motor shaft angular speed:
\[
E M F=K_{t} \omega
\]

The armature voltage is given by:
\[
V_{a}=L_{a} \frac{d i_{a}}{d t}+R_{a} i_{a}+E M F
\]

The starter motor current load is equal to the armature winding current:
\[
i_{\text {load }}=i_{a}
\]

The starter motor shaft torque is proportional to the armature winding current:
\[
T_{\text {mech }}=K_{t} i_{a}
\]

\section*{Series Excited DC Motor}

A series excited DC motor connects the armature and field windings in series with a common DC power source.

The counter-electromotive force is a product of the field and armature initial series current, field, and armature mutual inductance and motor shaft angular speed:
\[
E M F=i_{a f} L_{a f} \omega
\]

The field and armature winding voltage is given by:
\[
V_{a f}=L_{s e r} \frac{d i_{a f}}{d t}+R_{s e r} i_{a f}+E M F
\]

The starter motor current load is equal to the field and armature series current:
\[
i_{\text {load }}=i_{a f}
\]

The starter motor shaft torque is the product of the squared field and armature series current and the field and armature mutual inductance:
\[
T_{\text {mech }}=i_{a f}^{2} L_{a f}
\]

For motor stability, the motor shaft angular speed must be greater than the ratio of the series connected field and armature resistance to the mutual inductance:
\[
\omega>-\frac{R_{s e r}}{L_{a f}}
\]

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variabl & Equations \\
\hline \multirow[t]{8}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrMt
r & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=-\omega T_{\text {mech }}\) \\
\hline & & \[
\begin{aligned}
& \text { PwrBu } \\
& \text { s }
\end{aligned}
\] & Electrical power & \(P_{\text {bus }}\) & Separately excited DC motor
\[
P_{b u s}=v_{a} i_{a}+v_{f} i_{f}
\] \\
\hline & & & & & PM excited DC motor
\[
P_{b u s}=v_{a} i_{a}
\] \\
\hline & & & & & Series excited DC motor
\[
P_{b u s}=v_{a f} i_{a f}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLo SS & Motor losses & \(P_{\text {loss }}\) & \[
\begin{aligned}
& P_{\text {loss }}=-\left(P_{\text {mot }}\right. \\
& \left.+P_{\text {bus }}-P_{\text {ind }}\right)
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a
\end{tabular} & PwrIn d & Electrical inductance & \(P_{\text {ind }}\) & Separately excited DC motor
\[
\begin{aligned}
& P_{\text {ind }}=L_{f}{ }^{i} \frac{d i_{f}}{d t} \\
& +L_{a} i_{a} \frac{d i_{a}}{d t}
\end{aligned}
\] \\
\hline & decrease & & & & PM excited DC motor
\[
P_{\text {ind }}=L_{a} i_{a} \frac{d i_{a}}{d t}
\] \\
\hline & & & & & Series excited DC motor
\[
P_{\text {ind }}=L_{\text {ser }} i_{a f} \frac{d i_{a f}}{d t}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(R_{a} \quad\) Armature winding resistance
\(L_{a} \quad\) Armature winding inductance
EMF Counter-electromotive force
\(R_{f} \quad\) Field winding resistance
\(L_{f} \quad\) Field winding inductance
\(L_{a f} \quad\) Field and armature mutual inductance
\(i_{a} \quad\) Armature winding current
\(i_{f} \quad\) Field winding current
\(K_{t} \quad\) Motor torque constant
\(\omega \quad\) Motor shaft angular speed
\(V_{a} \quad\) Armature winding voltage
\(V_{f} \quad\) Field winding voltage
\(V_{a f} \quad\) Field and armature winding voltage
\(i_{a f} \quad\) Field and armature series current
\(R_{\text {ser }} \quad\) Series connected field and armature resistance
\(L_{\text {ser }} \quad\) Series connected field and armature inductance
\(i_{\text {load }}\) Starter motor current load
\(T_{\text {mech }} \quad\) Starter motor shaft torque

\section*{Ports}

Inputs
MtrSpd - Angular speed
scalar
Motor shaft angular speed, in rad/s.

\section*{StartVolt - Armature and field voltage \\ scalar}
- Armature winding voltage \(V_{a}\) and field winding voltage \(V_{f}\), in V .
- In series excited DC motor, armature and field winding voltage \(V_{a f}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline ArmCurr & & Armature winding current & A \\
\hline FldCurr & PwrInfo & PwrTrnsfrd & PwrMtr & Mechanical power \\
\cline { 3 - 5 } & & PwrBus & Electrical power & A \\
\hline \multirow{4}{*}{} & \begin{tabular}{l} 
PwrNotTrnsf \\
rd
\end{tabular} & PwrLoss & Motor power loss & W \\
\cline { 2 - 6 } & PwrStored & PwrInd & Electrical inductance & W \\
\hline
\end{tabular}

\section*{LdCurr - Starter motor load current \\ scalar}

Starter motor load current, in A.

\section*{MtrTrq - Starter motor shaft torque \\ scalar}

Starter motor shaft torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

\section*{Configuration}

\section*{Motor Type - Select motor type}

Separately Excited DC Motor (default)|Permanent Magnet Excited DC Motor|Series Connection DC Motor

Select one of the three motor types.

\section*{Dependencies}

The table summarizes the motor parameter dependencies.
\begin{tabular}{|c|c|}
\hline Motor Type & Enables Motor Parameter \\
\hline \multirow[t]{6}{*}{Separately Excited DC Motor} & Armature winding resistance, Ra \\
\hline & Armature winding inductance, La \\
\hline & Field winding resistance Rf \\
\hline & Field winding inductance, Lf \\
\hline & Mutual inductance, Laf \\
\hline & Initial armature and field current, Iaf \\
\hline \multirow[t]{4}{*}{Permanent Magnet Excited DC Motor} & Armature winding resistance, Rapm \\
\hline & Armature winding inductance, Lapm \\
\hline & Torque constant, Kt \\
\hline & Initial armature current, Ia \\
\hline \multirow[t]{4}{*}{Series Connection DC Motor} & Total resistance, Rser \\
\hline & Total inductance, Lser \\
\hline & Initial current, Iafser \\
\hline & Mutual inductance, Lafser \\
\hline
\end{tabular}

\section*{Separately Excited DC Motor}

Armature winding resistance, Ra - Resistance
1 (default) | scalar
Armature winding resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.
Armature winding inductance, La - Inductance
. 1 (default) | scalar

Armature winding inductance, in H .

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

\section*{Field winding resistance, Rf - Resistance}

\section*{. 3 (default) | scalar}

Field winding resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

\section*{Field winding inductance, Lf - Inductance}
. 2 (default) | scalar
Field winding inductance, in H .

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

\section*{Mutual inductance, Laf - Inductance}

\section*{. 3 (default) | scalar}

Mutual inductance, in H.

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.
Initial armature current and field current, Iaf - Current
[0 0] (default) |vector
Initial armature and field current, in A.

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

\section*{Permanent Magnet Excited DC Motor}

Armature winding resistance, Rapm - Resistance
. 5 (default) | scalar
Armature winding resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

Armature winding inductance, Lapm - Inductance
. 1 (default) | scalar
Armature winding inductance, in H .

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

Torque constant, Kt - Motor torque constant
. 1 (default) | scalar
Motor torque constant, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{A}\).

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

\section*{Initial armature current, Ia - Current}
. 1 (default) | scalar
Initial armature current, in A.

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

\section*{Series Connection DC Motor}

Total resistance, Rser - Resistance
. 1 (default) | scalar
Series connected field and armature resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.
Total inductance, Lser - Inductance
. 1 (default) | scalar
Series connected field and armature inductance, in H .

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

\section*{Initial current, Iafser - Current \\ 0 (default) | scalar}

Initial series current, in A.

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

\section*{Mutual inductance, Lafser - Inductance}
. 3 (default)| scalar
Field and armature mutual inductance, in H .

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

\section*{References}
[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Reduced Lundell Alternator

Introduced in R2017a

\section*{Bidirectional DC-DC}

DC-to-DC converter that supports bidirectional boost and buck
Library:
Powertrain Blockset / Energy Storage and Auxiliary Drive / DC-DC


\section*{Description}

The Bidirectional DC-DC block implements a DC-to-DC converter that supports bidirectional boost and buck (lower) operation. Unless the DC-to-DC conversion limits the power, the output voltage tracks the voltage command. You can specify electrical losses or measured efficiency.

Depending on your battery system configuration, the voltage might not be at a potential that is required by electrical system components such has inverters and motors. You can use the block to boost or buck the voltage. Connect the block to the battery and one of these blocks:
- Mapped Motor
- IM Controller
- Interior PM Controller
- Surface Mount PM Controller

To calculate the electrical loss during the DC-to-DC conversion, use Parameterize losses by.
\begin{tabular}{|l|l|}
\hline Parameter Option & Description \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for conversion \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of load current and voltage. \\
DC-to-DC converter data sheets typically provide loss data in this \\
format. When you use this option, provide data for all the operating \\
quadrants in which the simulation will run. If you provide partial \\
data, the block assumes the same loss pattern for other quadrants. \\
The block does not extrapolate loss that is outside the range voltage \\
and current that you provide. The block allows you to account for \\
fixed losses that are still present for zero voltage or current.
\end{tabular} \\
\hline
\end{tabular}

Parameter Option
Tabulated efficiency data

\section*{Description}

Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block:
- Assumes zero loss when either the voltage or current is zero.
- Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

Note The block does not support inversion. The polarity of the input voltage matches the polarity of the output voltage.

\section*{Theory}

The Bidirectional DC-DC block uses the commanded voltage and the actual voltage to determine whether to boost or buck (lower) the voltage. You can specify a time constant for the voltage response.
\begin{tabular}{|l|l|}
\hline If & Then \\
\hline Volt \(_{\text {cmd }}>\) Src \(_{\text {Volt }}\) & Boost \\
\hline Volt \(_{\text {cmd }}<\) Src \(_{\text {Volt }}\) & Buck \\
\hline
\end{tabular}

The Bidirectional DC-DC block uses a time constant-based regulator to provide a fixed output voltage that is independent of load current. Using the output voltage and current, the block determines the losses of the DC-to-DC conversion. The block uses the conversion losses to calculate the input current. The block accounts for:
- Bidirectional current flow
- Source to load - Battery discharge
- Load to source - Battery charge
- Rated power limits

The block provides voltage control that is power limited based on these equations. The voltage is fixed. The block does not implement a voltage drop because the load current approximates DC-to-DC conversion with a bandwidth that is greater than the load current draw.
\begin{tabular}{|l|l|}
\hline DC-to-DC converter load voltage & \(L d V o l t_{C m d}=\min \left(V_{\text {olt }}^{\text {Cmd }}\right.\), \\
& \(\left.\frac{P_{\text {limit }}}{L d_{A m p}}, 0\right)\) \\
& \(L d V o l t=L d V o l t_{\text {Cmd }} \cdot \frac{1}{\tau S+1}\)
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Power loss for single efficiency load \\
to source
\end{tabular} & \(P w r_{\text {Loss }}=\frac{100-E f f}{E f f} \cdot\left|L d_{\text {Volt }} \cdot L d_{A m p}\right|\) \\
\hline Power loss for tabulated efficiency & \(\operatorname{Prw_{\text {Loss}}=f(Ld_{\text {Volt}},Ld_{Amp})}\) \\
\hline \begin{tabular}{l} 
Source current draw from DC-to-DC \\
converter
\end{tabular} & \(\operatorname{Src_{Amp}=\frac {Ld_{Pwr}+Prw_{\text {Loss}}}{SrC_{Volt}}}\) \\
\hline \begin{tabular}{l} 
Source power from DC-to-DC \\
converter
\end{tabular} & \(S r C_{P w r}=\operatorname{Sr} C_{A m p} \cdot \operatorname{Src_{Volt}}\) \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & \begin{tabular}{l}
Descriptio \\
n
\end{tabular} & Variable & Equation s \\
\hline \multirow[t]{4}{*}{PwrInfo} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrBusSrc & Source power to DC-to-DC converter & \(P_{\text {src }}\) & \[
\begin{aligned}
& P_{s r c}= \\
& S r c P w r
\end{aligned}
\] \\
\hline & & PwrBusLd & Load power from DC-toDC converter & \(P_{\text {bus }}\) & \[
\begin{aligned}
& P_{b u s}= \\
& -L d V \text { olt }
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Converter power loss & \(P_{\text {loss }}\) & \[
\begin{aligned}
& P_{\text {loss }}= \\
& \text { PwrLoss }
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & Not used & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll} 
Volt \(_{\text {Cmd }}\) & DC-to-DC converter commanded output voltage \\
\(S r C_{\text {Volt }}\) & Source input voltage to DC-to-DC converter \\
\(L d_{\text {Amp }}\) & Load current of DC-to-DC converter \\
\(L d_{\text {Volt }}\) & Load voltage of DC-to-DC converter \\
\(S r c_{\text {Amp }}\) & Source current draw from DC-to-DC converter \\
\(\tau\) & Conversion time constant \\
\(V_{\text {init }}\) & Initial load voltage of the DC-to-DC converter \\
\(P_{\text {limit }}\) & Output power limit for DC-to-DC converter \\
\(E f f\) & Input to output efficiency \\
\(S r C_{\text {Pwr }}\) & Source power to DC-to-DC converter \\
\(L d_{P w r}\) & Load power from DC-to-DC converter
\end{tabular}
\begin{tabular}{ll}
\(P w r_{\text {Loss }}\) & Power loss \\
LdVolt \(_{\text {Cmd }}\) & Commanded load voltage of DC-to-DC converter before application of time constant
\end{tabular}

\section*{Ports}

\section*{Inputs}

VoltCmd - Commanded voltage
scalar
DC-to-DC converter commanded output voltage, Volt \(t_{C m d}\), in V .

\section*{SrcVolt - Input voltage \\ scalar}

Source input voltage to DC-to-DC converter, \(S r C_{\text {Volt }}\), in V.

\section*{LdCurr - Load current}
scalar
Load current of DC-to-DC converter, \(L d_{\text {Amp, }}\), in A.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{SrcPwr} & Source power to DC-to-DC converter & Src \(C_{\text {Pwr }}\) & W \\
\hline \multicolumn{3}{|l|}{LdPwr} & Load power from DC-to-DC converter & \({L d_{\text {Pwr }}}\) & W \\
\hline \multicolumn{3}{|l|}{PwrLoss} & Power loss & Pwr \({ }_{\text {Loss }}\) & W \\
\hline \multicolumn{3}{|l|}{LdVoltCmd} & Commanded load voltage of DC-toDC converter before application of time constant & LdVolt \(_{\text {cmd }}\) & V \\
\hline \multirow[t]{4}{*}{PwrInfo} & PwrTrnsfrd & PwrBusSrc & Source power to DC-to-DC converter & \(P_{\text {src }}\) & W \\
\hline & & PwrBusLd & Load power from DC-to-DC converter & \(P_{\text {bus }}\) & W \\
\hline & PwrNotTrnsfrd & PwrLoss & Converter power loss & \(P_{\text {loss }}\) & W \\
\hline & PwrStored & Not used & & & \\
\hline
\end{tabular}

\section*{LdVolt - Load voltage}
scalar
Load voltage of DC-to-DC converter, \(L d_{\text {Volt, }}\) in V .

\section*{SrcCurr - Source current \\ scalar}

Source current draw from DC-to-DC converter, \(S r C_{A m p}\), in A.

\section*{Parameters}

Electrical Control
Converter response time constant - Constant
1/1000 (default) | scalar
Converter response time, \(\tau\), in s.
Converter response initial voltage, Vinit - Voltage
0 (default) | scalar
Initial load voltage of the DC-to-DC converter, \(V_{\text {init }}\) in V.
Converter power limit, Plimit - Power
100000 (default) | scalar
Initial load voltage of the DC-to-DC converter, \(P_{\text {limit }}\), in W.

\section*{Electrical Losses}
```

Parameterize losses by - Loss calculation
Single efficiency measurement (default)|Tabulated loss data|Tabulated
efficiency data

```

This table summarizes the loss options used to calculate electrical options.
\begin{tabular}{|l|l|}
\hline Parameter Option & Description \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for conversion \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of load current and voltage. \\
DC-to-DC converter data sheets typically provide loss data in this \\
format. When you use this option, provide data for all the operating \\
quadrants in which the simulation will run. If you provide partial \\
data, the block assumes the same loss pattern for other quadrants. \\
The block does not extrapolate loss that is outside the range voltage \\
and current that you provide. The block allows you to account for \\
fixed losses that are still present for zero voltage or current.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l}
\hline Parameter Option \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block:
- Assumes zero loss when either the voltage or current is zero.
- Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.

\section*{Overall DC to DC converter efficiency, eff - Constant 98 (default) | scalar}

Overall conversion efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Single efficiency measurement.

\section*{Vector of voltages (v) for tabulated loss, v_loss_bp - Breakpoints \\ [0 200400600800 1000] (default) | 1-by-M vector}

Tabulated loss breakpoints for M load voltages, in V.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of currents (i) for tabulated loss, i_loss_bp - Breakpoints \\ [0 255075 100] (default) | 1-by-N vector}

Tabulated loss breakpoints for N load currents, in A.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Corresponding losses, losses_table - 2-D lookup table \\ N -by-M matrix}

Electrical loss map, as a function of N load currents and M load voltages, in W .

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of voltages (v) for tabulated efficiency, v_eff_bp - Breakpoints [200 400600800 1000] (default) | 1-by-M vector}

Tabulated efficiency breakpoints for M load voltages, in V.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Vector of currents (i) for tabulated efficiency, i_eff_bp - Breakpoints [25 5075 100] (default)| 1-by-N vector

Tabulated efficiency breakpoints for N load currents, in A .

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.
Corresponding efficiency, efficiency_table - 2-D lookup table
N -by-M matrix
Electrical efficiency map, as a function of N load currents and M load voltages, in \%.
Dependencies
To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Estimation Equivalent Circuit Battery | Equivalent Circuit Battery

\section*{Topics}

Battery Modeling
Introduced in R2017b

\title{
Equivalent Consumption Minimization Strategy
}

Energy management controller for P0-P4 hybrid electric vehicles
Library:
Powertrain Blockset / Propulsion / Supervisory Controllers


\section*{Description}

Use the Equivalent Consumption Minimization Strategy (ECMS) block to control the energy management of hybrid electric vehicles (HEVs). The block optimizes the torque split between the engine and motor to minimize energy consumption while maintaining the battery state of charge (SOC).

The HEV P0, P1, P2, P3, and P4 reference applications use the Equivalent Consumption Minimization Strategy block for hybrid control.

Use the Motor location parameter to specify the HEV motor location.


Use the ECMS method parameter to implement either an adaptive or non-adaptive ECMS method. The HEV architectures are charge-sustaining, meaning the battery SOC must remain in a specified range because there is no plugin capability to recharge the battery. The battery is an energy buffer, and all energy comes from the fuel if the change in SOC is minimized over a drive cycle. To sustain the charge over a specified drive cycle, the block implements either of these ECMS methods.
\begin{tabular}{|l|l|}
\hline ECMS Method & Description \\
\hline Non-adaptive (default) & \begin{tabular}{l} 
The block uses a constant ECMS equivalence factor. \\
- Use this method to determine the best fuel economy over a drive \\
cycle. \\
- If you change the drive cycle or HEV architecture, retune the \\
ECMS weighting factor to maintain the ending SOC. \\
- By default, the block uses a single constant.
\end{tabular} \\
\hline Adaptive & \begin{tabular}{l} 
The block adjusts an ECMS equivalence factor by using the output \\
of a PI controller.
\end{tabular} \\
& \begin{tabular}{l} 
- Use this method to maintain the SOC and minimize the delta \\
SOC over many drive cycles. The block: \\
- Tunes the PI controller gains. \\
- Sustains the SOC.
\end{tabular} \\
& \begin{tabular}{l} 
The PI controller minimizes the error between the target SOC \\
and current SOC.
\end{tabular} \\
\hline
\end{tabular}

\section*{ECMS Control Algorithm}

The block implements a dynamic supervisory controller that determines the engine torque, motor torque, starter, clutch, and brake pressure commands. Specifically, the block:
- Converts the driver accelerator pedal signal to a wheel torque request. To calculate the total powertrain torque at the wheels, the algorithm uses the maximum engine torque and motor torque curves and the transmission and differential gear ratios.
- Converts the driver brake pedal signal to a brake pressure request. The algorithm multiplies the brake pedal signal by a maximum brake pressure.
- Implements a regenerative braking algorithm for the traction motor to recover the maximum amount of kinetic energy from the vehicle.

The block implements an ECMS algorithm \({ }^{[2]}\) that optimizes the torque split between the engine and motor to minimize energy consumption while maintaining the battery SOC. Specifically, the ECMS:
- Assigns a cost to electrical energy, so that using stored electrical energy is equal to consuming fuel energy.
\begin{tabular}{|l|l|l}
\hline \begin{tabular}{l} 
Battery \\
Mode
\end{tabular} & \begin{tabular}{l} 
Equivale \\
nt \\
Electrical \\
Energy
\end{tabular} \\
\hline \begin{tabular}{l} 
Dischargi \\
ng
\end{tabular} & Positive & \begin{tabular}{l} 
Battery discharges stored electrical energy when the electric \\
machine is in use.
\end{tabular} \\
& \begin{tabular}{l} 
Fuel equivalent to \\
recharging battery
\end{tabular} &
\end{tabular}

- Is an instantaneous minimization method that the software solves at every controller time step. To implement the strategy, the ECMS selects the optimal motor and engine torque in the optimization strategy to minimize the equivalent energy consumption.
- Implements either an adaptive or non-adaptive ECMS method.

\section*{Ports}

\section*{Input}

WhlTrqCmd - Wheel torque command
scalar
Wheel torque command.
Data Types: double

\section*{BattSoc - Battery state of charge \\ scalar}

Battery state of charge.
Data Types: double

\section*{BattVolt - Battery voltage \\ scalar}

Battery voltage.
Data Types: double

\section*{Gear - Transmission gear \\ scalar}

Transmission gear.
Data Types: double
MtrSpd - Motor speed
scalar
Motor speed.
Data Types: double
VehSpd - Vehicle speed
scalar
Vehicle speed, in m/s.

\section*{Data Types: double}

\section*{TransTemp - Transmission temperature}

\section*{scalar}

Transmission temperature, in K.
Data Types: double

\section*{Output}

\section*{Info - Block data}
bus
Block data, returned as a bus signal that contains these block values.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline EngTrqCmd & Engine torque command & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline MtrTrqCmd & Motor torque command & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EquivFctr & Equivalence factor & NA \\
\hline MinHamil & Minimum Hamiltonian & kW \\
\hline
\end{tabular}

\section*{EngTrqCmd - Engine torque command scalar}

Engine torque command, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double
MtrTrqCmd - Motor torque command scalar

Motor torque command, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double

\section*{Parameters}

\section*{Block Options}

Motor location - Location of motor
P0 (default) | P1 | P2 | P3 | P4
Specify the HEV motor location.


\section*{ECMS method - ECMS method}

Non-adaptive (default) | Adaptive
Use the ECMS method parameter to implement either an adaptive or non-adaptive ECMS method. The HEV architectures are charge-sustaining, meaning the battery SOC must remain in a specified range because there is no plugin capability to recharge the battery. The battery is an energy buffer, and all energy comes from the fuel if the change in SOC is minimized over a drive cycle. To sustain the charge over a specified drive cycle, the block implements either of these ECMS methods.
\begin{tabular}{|l|l|}
\hline ECMS Method & Description \\
\hline Non-adaptive (default) & \begin{tabular}{l} 
The block uses a constant ECMS equivalence factor. \\
- Use this method to determine the best fuel economy over a drive \\
cycle.
\end{tabular} \\
& \begin{tabular}{l} 
If you change the drive cycle or HEV architecture, retune the \\
ECMS weighting factor to maintain the ending SOC. \\
By default, the block uses a single constant.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline ECMS Method & Description \\
\hline Adaptive & \begin{tabular}{l} 
The block adjusts an ECMS equivalence factor by using the output \\
of a PI controller.
\end{tabular} \\
& \begin{tabular}{l} 
- Use this method to maintain the SOC and minimize the delta \\
SOC over many drive cycles. The block:
\end{tabular} \\
& \begin{tabular}{l} 
- Tunes the PI controller gains. \\
- Sustains the SOC.
\end{tabular} \\
& \begin{tabular}{l} 
The PI controller minimizes the error between the target SOC \\
and current SOC.
\end{tabular} \\
\hline
\end{tabular}

\section*{Differential}

\section*{Differential gear ratio, N_diff - Differential gear ratio}
3.32 (default) | scalar

Differential gear ratio. No dimension.
Data Types: double
```

Differential efficiency factor, eta_diff - Differential efficiency factor 0.98 (default) | scalar

```

Differential efficiency factor. No dimension.

\section*{Data Types: double}

\section*{Loaded wheel radius, Re - Loaded wheel radius \\ 0.327 (default) | scalar}

Loaded wheel radius, in m.

\section*{Data Types: double}

\section*{Transmission}

Transmission efficiency factors - Transmission efficiency factors
Gear, input torque, input speed, and temperature (default)|Gear only
Transmission efficiency factors.
Data Types: double
Transmission gear number vector, G_trans - Transmission gear number vector [0 1 2345 6] (default)|vector

Transmission gear number vector. No dimension.
Data Types: double
Transmission gear ratio vector, N_trans - Transmission gear ratio vector [1 4.2122 .6371 .81 .38610 .772 ] (default) |vector

Transmission gear ratio vector. No dimension.
Data Types: double

Transmission efficiency vector, eta_trans - Transmission efficiency vector [1 1 1 1 1 1 1] (default)|vector

Transmission efficiency vector. No dimension.

\section*{Dependencies}

To enable this parameter, set Transmission efficiency factors to Gear only.
Data Types: double
Transmission efficiency torque breakpoints, Trq_trans_bpts - Transmission efficiency torque breakpoints
[25 5075100150200 250] (default)|vector
Transmission efficiency torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Transmission efficiency factors to Gear, input torque, input speed, and temperature.
Data Types: double
Transmission efficiency speed breakpoints, omega_trans_bpts - Transmission efficiency speed breakpoints
[500.383141080919 749.619781962827 1002.676141478941 1250.957852702297
1499.2395639256541747 .5212751490111995 .802986372368 2501.915705404595
2998.479127851308 4001.155269330249 5003.83141080919] (default)| vector

Transmission efficiency speed breakpoints, in rad/s.

\section*{Dependencies}

To enable this parameter, set Transmission efficiency factors to Gear, input torque, input speed, and temperature.
Data Types: double
Transmission efficiency temperature breakpoints, Temp_trans_bpts - Transmission efficiency temperature breakpoints
[313 358] (default) | vector
Transmission efficiency temperature breakpoints, in K.

\section*{Dependencies}

To enable this parameter, set Transmission efficiency factors to Gear, input torque, input speed, and temperature.

Data Types: double
Transmission efficiency vector, eta_trans_tbl - Transmission efficiency vector array

Transmission efficiency vector. No dimension.

\section*{Dependencies}

To enable this parameter, set Transmission efficiency factors to Gear, input torque, input speed, and temperature.
Data Types: double

\section*{Engine}

Speed breakpoints, f_tbrake_n_bpt - Speed breakpoints
[0 7501053.571428571431357 .142857142861660 .714285714291964 .28571428571
2267.857142857142571 .4285714285728753178 .571428571433482 .14285714286
\(3785.714285714294089 .285714285714392 .857142857144696 .428571428575000]\)
(default) | vector
Speed breakpoints, in rpm.
Data Types: double
Commanded torque breakpoints, f_tbrake_t_bpt - Commanded torque breakpoints
[0 1526.428571428571437 .857142857142949 .285714285714360 .7142857142857
72.142857142857183 .571428571428695106 .428571428571117 .857142857143
129.285714285714140 .714285714286152 .142857142857163 .571428571429 175]
(default) | vector
Commanded torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double
Brake torque map, f_tbrake - Brake torque map
array
Brake torque map, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double
Minimum engine torque command table, f_tbrake_min - Minimum engine torque command table
vector
Minimum engine torque command table, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double
Fuel flow map, f_fuel - Fuel flow map
array
Fuel flow map, in kg/s.
Data Types: double
Minimum engine torque command, HEVEngTrq_min - Minimum engine torque command 16.18610438796213 (default) | scalar

Minimum engine torque command, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double

Fuel lower heating value, LHV - Fuel lower heating value 46000000 (default) | scalar

Fuel lower heating value, in J/kg.
Data Types: double
Engine idle speed, N_idle - Engine idle speed 750 (default) | scalar

Engine idle speed, in rpm.
Data Types: double

\section*{Battery}

Battery state-of-charge breakpoints, SOC_bpt - Battery state-of-charge breakpoints
[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1] (default)|vector
Battery state-of-charge breakpoints. No dimension.
Data Types: double
Battery charge limit table, ChrgLmt - Battery charge limit table
[1 1 1 1 1 1 1 0.9 0.7 0.5 0] (default)|vector
Battery charge limit table. No dimension.
Data Types: double
Battery discharge limit table, DischrgLmt - Battery discharge limit table
[0 00.50 .70 .911111111\(]\) (default)|vector
Battery discharge limit table. No dimension.
Data Types: double
Maximum battery current, BattCurrMax - Maximum battery current 150 (default) | scalar

Maximum battery current, in A.
Data Types: double
DC/DC converter efficiency, eta_dcdc - DC/DC converter efficiency 1 (default) | scalar

DC/DC converter efficiency. No dimension.
Data Types: double
Maximum battery charge power, BattChrgPwrMax - Maximum battery charge power - 30000 (default) | scalar

Maximum battery charge power, in W.
Data Types: double

Maximum battery discharge power, BattDischrgPwrMax - Maximum battery discharge power
46000 (default) | scalar
Maximum battery discharge power, in W.
Data Types: double
Motor
Motor maximum torque table, f_tmtr_max - Motor maximum torque table vector

Motor maximum torque table, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double
Motor speed breakpoints, f_mtr_w_bpt - Motor speed breakpoints vector

Motor speed breakpoints, in rpm.
Data Types: double
Motor torque breakpoints, f_mtr_t_bpt - Motor torque breakpoints vector

Motor torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).
Data Types: double
Motor efficiency map, f_mtr_eta - Motor efficiency map
array
Motor efficiency map. No dimension.
Data Types: double
Number of motor torque calculation points, Ngrid - Number of motor torque calculation points
200 (default) | scalar
Number of motor torque calculation points. No dimension.
Data Types: double
P0 belt ratio, N_P0 - P0 belt ratio
3 (default) | scalar
P0 belt ratio. No dimension.

\section*{Dependencies}

To enable this parameter, set Motor location to P0.
Data Types: double

\section*{Energy Management \\ ECMS weighting factor, ECMS_s - ECMS weighting factor \\ 3.385 (default)|scalar}

ECMS weighting factor. No dimension.
Data Types: double
Penalty factor power, PenaltyFctrPwr - Penalty factor power
3 (default) | scalar
Penalty factor power. No dimension.
Data Types: double
Adaptive ECMS proportional gain, ECMS_Kp - Adaptive ECMS proportional gain 0 (default) | scalar

Adaptive ECMS proportional gain. No dimension.

\section*{Dependencies}

To enable this parameter, set ECMS method to Adaptive.
Data Types: double
Adaptive ECMS integral gain, ECMS_Ki - Adaptive ECMS integral gain 0 (default) | scalar

Adaptive ECMS integral gain. No dimension.

\section*{Dependencies}

To enable this parameter, set ECMS method to Adaptive.
Data Types: double
Constraint penalty factor, PenaltyFctr - Constraint penalty factor 10000000 (default) | scalar

Constraint penalty factor. No dimension.
Data Types: double
Target battery state-of-charge, SOCTrgt - Target battery state-of-charge 60 (default) | scalar

Target battery state-of-charge. No dimension.
Data Types: double
Minimum battery state-of-charge, SOCmin - Minimum battery state-of-charge 40 (default) | scalar

Minimum battery state-of-charge. No dimension.
Data Types: double

\section*{Maximum battery state-of-charge, SOCmax - Maximum battery state-of-charge 80 (default) | scalar}

Maximum battery state-of-charge. No dimension.
Data Types: double

\section*{Acknowledgments}

MathWorks \({ }^{\circledR}\) would like to acknowledge the contribution of Dr. Simona Onori to the ECMS optimal control algorithm implemented in this block. Dr. Onori is a Professor of Energy Resources Engineering at Stanford University. Her research interests include electrochemical modeling, estimation and optimization of energy storage devices for automotive and grid-level applications, hybrid and electric vehicles modeling and control, PDE modeling, and model-order reduction and estimation of emission mitigation systems. She is a senior member of IEEE.

\section*{References}
[1] Balazs, A., Morra, E., and Pischinger, S., Optimization of Electrified Powertrains for City Cars. SAE Technical Paper 2011-01-2451. Warrendale, PA: SAE International Journal of Alternative Powertrains, 2012.
[2] Onori, S., Serrao, L., and Rizzoni, G., Hybrid Electric Vehicles Energy Management Systems. New York: Springer, 2016.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Topics
"Hybrid and Electric Vehicle Reference Application Projects"
Introduced in R2020b

\section*{Power Accounting Bus Creator}

Create power information bus
Library:
Powertrain Blockset / Utilities / Power Accounting


\section*{Description}

Creates a power information bus for reporting system power and energy consumption. You can associate the block to a parent system, select types of power signals to track, and add signal descriptions. If you want to generate a power and energy report, you must use this block to log the power signals in your plant model blocks. The Powertrain Blockset plant blocks use the Power Accounting Bus Creator to log the power signals. The documentation for each block includes information about the logged power bus signals.

The system-level power and energy accounting satisfies the conservation of energy.
\[
\sum P_{\text {trans }}+\sum P_{\text {nottrans }}=\sum P_{\text {store }}
\]

To add the Power Accounting Bus Creator to your plant block, follow these steps:
1 Add the Power Accounting Bus Creator block to your block.
2 Select the types of power signals that you want to log. See "Power Signals" on page 3-53.
3 Associate the Power Accounting Bus Creator with a parent subsystem. See "Block Association" on page 3-54.
4 Connect the power signals to the Power Accounting Bus Creator.
- Follow the sign convention.
- To ensure that your plant block conserves energy, include all power associated with the block.

5 In the Power Accounting Bus Creator:
- On the Transferred power tab, specify these parameters:

\section*{- Associated Port}
- Description
- On the Not Transferred power tab, specify the Description parameter:

6 In the plant block, connect the transferred power signals to the Power Accounting Bus Creator ports that are specified with the Associated Port parameter.

\section*{Power Signals}

The Power Accounting Bus Creator sorts the signals into three power types.
\begin{tabular}{|c|c|c|c|}
\hline Power & pe & Description & Examples \\
\hline \(P_{\text {trans }}\) & Transferred & \begin{tabular}{l}
Power transferred between blocks: \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & \begin{tabular}{l}
- Crankshaft power transferred from mapped engine to transmission. \\
- Road load power transferred from wheel to vehicle. \\
- Rate of heat flow transferred from throttle to manifold volume.
\end{tabular} \\
\hline \(P_{\text {nottrans }}\) & Not transferred & \begin{tabular}{l}
Power crossing the block boundary, but not transferred: \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & \begin{tabular}{l}
- Rate of heat transfer with the environment. \\
- From environment is an input (positive signal) \\
- To environment is a loss (negative signal) \\
- Flow boundary with the environment. \\
- From environment is an input (positive signal) \\
- To environment is a loss (negative signal) \\
- Mapped engine fuel flow.
\end{tabular} \\
\hline \(P_{\text {store }}\) & Stored & \begin{tabular}{l}
Stored energy rate of change: \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & \begin{tabular}{l}
Energy rate of change: \\
- Battery storage \\
- Kinetic energy in drivetrain components \\
- Vehicle potential energy \\
- Vehicle velocity
\end{tabular} \\
\hline
\end{tabular}

\section*{Block Association}

When you add the Power Accounting Bus Creator to your plant block, you associate the signals to a parent block. There are two association methods.



\section*{Ports}

\section*{Input}

\section*{PwrTrnsfrd - Power transferred between blocks}
bus
PwrTrnsfrd - Power transferred between blocks
- Positive signals indicate flow into block
- Negative signals indicate flow out of block

\section*{Dependencies}

To create this input port, select Transferred power.
PwrNotTrnsfrd - Power crossing block boundary, not transferred
bus
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred
- Positive signals indicate an input
- Negative signals indicate a loss

Dependencies
To create this input port, select Not transferred power.

\section*{PwrStored - Stored energy rate of change} bus

PwrStored - Stored energy rate of change
- Positive signals indicate an increase
- Negative signals indicate a decrease

\section*{Dependencies}

To create this input port, select Stored power.
Output
PwrInfo - Power information bus
bus
Power information bus

\section*{Parameters}

\section*{Block Options}

\section*{Associated block - Associated block}

Parent (default)|Parent reference block
When you add the Power Accounting Bus Creator to your plant block, you associate the signals to a parent block. There are two association methods.



\section*{Library block name - Block name}

Block name

\section*{Dependencies}

To create this parameter, set Associated block to Parent reference block.

\section*{Power Input Types}

Transferred power - Power transferred between blocks
on (default) | off
Power transferred between blocks.

\section*{Dependencies}

Selecting this parameter creates the:
- PwrTrnsfrd input port
- Transferred parameters

\section*{Not transferred power - Power crossing block boundary} on (default) | off

Power crossing block boundary, but not transferred.

\section*{Dependencies}

Selecting this parameter creates the:
- PwrNotTrnsfrd input port
- Not Transferred parameters

\section*{Stored power - Stored energy rate of change}
on (default) | off
Stored energy rate of change.

\section*{Dependencies}

Selecting this parameter creates the:
- PwrStored input port
- Stored parameters

\section*{Transferred}

\section*{Signal name - Name of signal \\ char}

Signal name.
For example, this table summarizes the Power Accounting Bus Creator parameter Transferred parameter values for the listed blocks.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Block } & Power Accounting Bus Creator Parameter Values \\
& Signal Name & Associated Port & Description \\
\hline \begin{tabular}{l} 
Ideal \\
Fixed \\
Gear \\
Trans \\
missi \\
on
\end{tabular} & PwrTrnsfrd.PwrDiffrntl & \{'DiffTrq', 'DiffSpd'\} & Differential \\
\cline { 2 - 4 } \begin{tabular}{l} 
Gearb \\
ox
\end{tabular} & PwrTrnsfrd.PwrBase & \{'EngTrq', 'EngSpd'\} & Engine \\
\cline { 2 - 5 } & PwrTrnsfrd.PwrFlwr & \{\{'BTrq' , 'BSpd' ' 'B'\} & Base input \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Block } & Power Accounting Bus Creator Parameter Values \\
\cline { 2 - 4 } & Signal Name & Associated Port & Description \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Boost \\
Drive \\
Shaft
\end{tabular}} & PwrTrnsfrd.PwrCmpsr & 'Cmpsr' & Compressor \\
\cline { 2 - 4 } & PwrTrnsfrd.PwrExt & 'ExtTrq' & External \\
\cline { 2 - 4 } & PwrTrnsfrd.Turb & 'Turb' & Turbine \\
\hline
\end{tabular}

Associated Port - Name of ports that transfer power
\{'PortA','PortB','PortC'\}
Name of ports that transfer power.
For example, this table summarizes the Power Accounting Bus Creator parameter Transferred parameter values for the listed blocks.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Block} & \multicolumn{3}{|l|}{Power Accounting Bus Creator Parameter Values} \\
\hline & Signal Name & Associated Port & Description \\
\hline \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline Ideal \\
Fixed \\
Gear \\
Trans \\
missi \\
on \\
\hline
\end{tabular}} & PwrTrnsfrd.PwrDiffrntl & \{'DiffTrq','DiffSpd'\} & Differential \\
\hline & PwrTrnsfrd.PwrEng & \{'EngTrq', 'EngSpd'\} & Engine \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { Gearb } \\
\text { ox }
\end{array}
\]} & PwrTrnsfrd.PwrBase & \{\{'BTrq', 'BSpd'\}'B'\} & Base input \\
\hline & PwrTrnsfrd.PwrFlwr & \{\{'FTrq', 'FSpd'\}'F'\} & Follower output \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Boost } \\
\text { Drive } \\
\text { Shaft }
\end{array}
\end{array}
\]} & PwrTrnsfrd.PwrCmpsr & 'Cmpsr' & Compressor \\
\hline & PwrTrnsfrd.PwrExt & 'ExtTrq' & External \\
\hline & PwrTrnsfrd.Turb & 'Turb' & Turbine \\
\hline
\end{tabular}

\section*{Description - Signal description}
char
Signal description.
For example, this table summarizes the Power Accounting Bus Creator parameter Transferred parameter values for the listed blocks.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Block } & Power Accounting Bus Creator Parameter Values & \\
\cline { 2 - 4 } & Signal Name & Associated Port & Description \\
\hline \begin{tabular}{l} 
Ideal \\
Fixed \\
Gear \\
Trans \\
missi \\
on
\end{tabular} & PwrTrnsfrd.PwrDiffrntl & \{'DiffTrq' , 'DiffSpd'\} & Differential \\
\cline { 2 - 4 } \begin{tabular}{l} 
Gearb \\
ox
\end{tabular} & PwrTrnsfrd.PwrBase & \{'EngTrq' , 'EngSpd' \} & Engine \\
\cline { 2 - 4 } & PwrTrnsfrd.PwrFlwr & \{\{'BTrq' , 'BSpd' ' 'B'\} & Base input \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Block } & Power Accounting Bus Creator Parameter Values \\
\cline { 2 - 4 } & Signal Name & Associated Port & Description \\
\hline \begin{tabular}{l} 
Boost \\
Drive \\
Shaft
\end{tabular} & PwrTrnsfrd.PwrCmpsr & 'Cmpsr' & Compressor \\
\cline { 2 - 4 } & PwrTrnsfrd.PwrExt & 'ExtTrq' & External \\
\cline { 2 - 4 } & PwrTrnsfrd.Turb & 'Turb' & Turbine \\
\hline
\end{tabular}

\section*{Not Transferred}

\section*{Signal name - Name of signal}
char
Signal name.
For example, this table summarizes the Power Accounting Bus Creator parameter Not Transferred parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & \multicolumn{2}{|l|}{ Power Accounting Bus Creator Parameter Values } \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal Fixed \\
Gear \\
Transmissi \\
on
\end{tabular} & PwrNotTrnsfrd.PwrDampLoss & Pamping loss \\
\hline \multirow{2}{*}{ Gearbox } & PwrNotTrnsfrd.PwrEffLoss & Efficiency loss \\
\cline { 2 - 3 } & PwrNotTrnsfrd.PwrDampLoss & Damping loss \\
\hline \begin{tabular}{l} 
Boost \\
Drive \\
Shaft
\end{tabular} & PwrNotTrnsfrd.PwrMechLoss & Mechanical loss \\
\hline
\end{tabular}

\section*{Description - Signal description}
char
Signal description.
For example, this table summarizes the Power Accounting Bus Creator parameter Not Transferred parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & \multicolumn{2}{|l|}{ Power Accounting Bus Creator Parameter Values } \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal Fixed \\
Gear \\
Transmissi \\
on
\end{tabular} & PwrNotTrnsfrd.PwrDampLoss & PwrNotTrnsfrd.PwrEffLoss \\
\hline \multirow{2}{*}{ Gearbox } & PwrNotTrnsfrd.PwrDampLoss & Efficiency loss \\
\cline { 2 - 3 } & PwrNotTrnsfrd.PwrMechLoss & Damping loss \\
\hline \begin{tabular}{l} 
Boost \\
Drive \\
Shaft
\end{tabular} & PwrNotTrnsfrd.PwrMechLoss & Mechanical loss \\
\hline
\end{tabular}

\section*{Stored}

Signal name - Name of signal
char
Signal name.
For example, this table summarizes the Power Accounting Bus Creator parameter Stored parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & Power Accounting Bus Creator Parameter Values \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal Fixed \\
Gear \\
Transmissi \\
on
\end{tabular} & PwrStored. PwrStoredTrans & Rotational \\
\hline \begin{tabular}{l} 
Control \\
Volume \\
System
\end{tabular} & PwrStored.PwrHeatStored & Stored heat \\
\hline \begin{tabular}{l} 
Datasheet \\
Battery
\end{tabular} & PwrStored.PwrStoredBatt & Battery stored \\
\hline
\end{tabular}

\section*{Description - Signal description}
char
Signal description.
For example, this table summarizes the Power Accounting Bus Creator parameter Stored parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|3}{ Block } & Power Accounting Bus Creator Parameter Values \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal Fixed \\
Gear \\
Transmissi \\
on
\end{tabular} & PwrStored.PwrStoredTrans & Rotational \\
\hline \begin{tabular}{l} 
Control \\
Volume \\
System
\end{tabular} & PwrStored.PwrHeatStored & Stored heat \\
\hline \begin{tabular}{l} 
Datasheet \\
Battery
\end{tabular} & PwrStored.PwrStoredBatt & Battery stored \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink® Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}
autoblks.pwr.PlantInfo

\author{
Topics \\ "Conventional Vehicle Powertrain Efficiency" \\ "Analyze Power and Energy" \\ Introduced in R2019a
} Propulsion Blocks

\section*{Boost Drive Shaft}

Boost drive shaft speed

Powertrain Blockset / Propulsion / Combustion Engine Components / Boost


\section*{Description}

The Boost Drive Shaft block uses the compressor, turbine, and external torques to calculate the drive shaft speed. Use the block to model turbochargers and superchargers in an engine model.

You can specify these configurations:
- Turbocharger - Connect the compressor to the turbine
- Two-way ports for turbine and compressor connections
- Option to add an externally applied input torque
- Compressor only - Connect the drive shaft to the compressor
- Two-way port for compressor connection
- Externally applied input torque
- Turbine only - Connect the drive shaft to the turbine
- Two-way port for turbine connection
- Externally applied load torque

For the Turbine only and Turbocharger configurations, the block modifies the turbine torque with a mechanical efficiency.

\section*{Equations}

The Boost Drive Shaft block applies Newton's Second Law for Rotation. Positive torques cause the drive shaft to accelerate. Negative torques impose a load and decelerate the drive shaft.

The block also calculates the power loss due to mechanical inefficiency.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Shaft dynamics & \(\frac{d \omega}{d t}=\frac{1}{J_{\text {shaft }}}\left(\eta_{\text {mech }} \tau_{\text {turb }}+\tau_{\text {comp }}+\tau_{\text {ext }}\right)\) with initial speed \(\omega_{0}\) \\
\hline Speed constraint & \(\omega_{\min } \leq \omega \leq \omega_{\max }\) \\
\hline Power loss & \(\dot{W}_{\text {loss }}=\omega \tau_{\text {turb }}\left(1-\eta_{\text {mech }}\right)\) \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
PwrInf \\
0
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrCmps r & Shaft power from compressor & \(\tau_{\text {comp }} \omega\) \\
\hline & & PwrTurb & Shaft power from turbine & \(\tau_{t u r b} \omega\) \\
\hline & & PwrExt & Externally applied power & \(\tau_{\text {ext }} \omega\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrMechLoss & Mechanical power loss & \(-W_{\text {turb }}\) \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrStoredDriveshf t & Rate change in rotational kinetic energy & \[
\begin{aligned}
& \left(\eta_{\text {mech }} \tau_{\text {turb }}\right. \\
& +\tau_{\text {comp }} \\
& \left.+\tau_{\text {ext }}\right) \omega
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega\) & Shaft speed \\
\(\omega_{0}\) & Initial drive shaft speed \\
\(\omega_{\min }\) & Minimum drive shaft speed \\
\(\omega_{\max }\) & Maximum drive shaft speed \\
\(J_{\text {shaft }}\) & Shaft inertia \\
\(\eta_{\text {max }}\) & Mechanical efficiency of turbine \\
\(\tau_{\text {comp }}\) & Compressor torque \\
\(\tau_{\text {turb }}\) & Turbine torque \\
\(\tau_{\text {ext }}\) & Externally applied torque. \\
\(\dot{W}_{\text {loss }}\) & Power loss due to mechanical inefficiency
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Cmprs - Compressor torque}
two-way connector port
Compressor torque, \(\tau_{\text {comp }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for the Configuration parameter, select Turbocharger or Compressor only.

\section*{Turb - Turbine torque}
two-way connector port
Turbine torque, \(\tau_{\text {turb }}\), in \(N \cdot \mathrm{~m}\).

\section*{Dependencies}

To create this port, for the Configuration parameter, select Turbocharger or Turbine only.

\section*{ExtTrq - Externally applied torque \\ scalar}

Externally applied torque, \(\tau_{\text {ext }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

For turbocharger configurations, to create this port, set Additional torque input to External torque input.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Units \\
\hline DriveshftSpd & Shaft speed & rad/s \\
\hline MechPwrLoss & Mechanical power loss & W \\
\hline \multirow{5}{*}{ ExtTrq } & Applied external torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multirow{4}{|l|}{ PwrInfo } & PwrTrnsfrd & PwrCmpsr & Shaft power from compressor \\
\cline { 3 - 5 } & PwrTurb & Shaft power from turbine & W \\
\cline { 3 - 5 } & PwrExt & Externally applied power & W \\
\cline { 2 - 5 } & \begin{tabular}{l} 
PwrNotTrns \\
frd
\end{tabular} & PwrMechLoss & Mechanical power loss \\
\cline { 2 - 5 } & PwrStored & \begin{tabular}{l} 
PwrStoredDriv \\
eshft
\end{tabular} & Rate change in rotational kinetic energy \\
\hline
\end{tabular}

\section*{Cmprs - Compressor speed}
two-way connector port
Compressor speed, \(\omega\), in rad/s.

\section*{Dependencies}

To create this port, for the Configuration parameter, select Turbocharger or Compressor only.

\section*{Turb - Turbine speed}
two-way connector port
Turbine speed, \(\omega\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for the Configuration parameter, select Turbocharger or Turbine only.

\section*{Parameters}

\section*{Block Options}

\section*{Configuration - Specify configuration}

Turbocharger (default)|Turbine only | Compressor only

\section*{Dependencies}
- Selecting Turbocharger or Compressor only creates the Cmprs port.
- Selecting Turbocharger or Turbine only creates the Turb port.

Additional torque input - Specify external torque input
External torque input (default)|No external torque

\section*{Dependencies}
- To enable this parameter, select a Turbocharger configuration.
- To create the Trq port, select External torque input.

\section*{Shaft inertia, J_shaft - Inertia}
1.55e-5 (default) | scalar

Shaft inertia, \(J_{\text {shaft }}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Initial shaft speed, w_0-Speed
1000 (default) | scalar
Initial drive shaft speed, \(\omega_{0}\), in rad/s.
Min shaft speed, w_min - Speed 100 (default) | scalar

Minimum drive shaft speed, \(\omega_{\text {min }}\), in rad/s.
Max shaft speed, w_max - Speed
20000 (default) | scalar
Maximum drive shaft speed, \(\omega_{\text {max }}\), in rad/s.
Turbine mechanical efficiency, eta_mech - Efficiency
0.95 (default)| scalar

Mechanical efficiency of turbine \(\eta_{\max }\).

\section*{Dependencies}

To enable this parameter, select the Turbocharger or Turbine only configuration.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Compressor | Turbine
Introduced in R2017a

\section*{CI Controller}

Compression-ignition controller that includes air mass flow, torque, and EGR estimation
Library:
Powertrain Blockset / Propulsion / Combustion Engine Controllers


\section*{Description}

The CI Controller block implements a compression-ignition (CI) controller with air mass flow, torque, exhaust gas recirculation (EGR) flow, exhaust back-pressure, and exhaust gas temperature estimation. You can use the CI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine block requires the commands that are output from the CI Controller block.

The block uses the commanded torque and measured engine speed to determine these open-loop actuator commands:
- Injector pulse-width
- Fuel injection timing
- Variable geometry turbocharger (VGT) rack position
- EGR valve area percent

The CI Controller block has two subsystems:
- The Controller subsystem - Determines the commands based on tables that are functions of commanded torque and measured engine speed.
\begin{tabular}{|l|l|}
\hline Based On & Determines Commands for \\
\hline Commanded torque & Injector pulse-width \\
Measured engine speed & Fuel injection timing \\
& VGT rack position \\
& EGR valve area percent \\
\hline
\end{tabular}
- The Estimator subsystem - Determines estimates based on these engine attributes.
\begin{tabular}{|l|l|}
\hline Based On & Estimates \\
\hline Measured engine speed & Air mass flow \\
Fuel injection timing & Torque \\
Cycle average intake manifold pressure and & Exhaust gas temperature \\
temperature & Exhaust gas back-pressure \\
Fuel injector pulse-width & EGR valve gas mass flow \\
Absolute ambient pressure & \\
EGR valve area percent & \\
VGT rack position & \\
VGT speed & \\
\hline
\end{tabular}

The figure illustrates the signal flow.


The figure uses these variables.
\(N \quad\) Engine speed
MAP Cycle average intake manifold absolute pressure
MAT Cycle average intake manifold gas absolute temperature
EGRap, \(E G R_{c m d} \quad\) EGR valve area percent and EGR valve area percent command, respectively
\(V G T_{\text {pos }} \quad\) VGT rack position
\begin{tabular}{ll}
\(N_{v g t}\) & Corrected turbocharger speed \\
\(R P_{\text {cmd }}\) & VGT rack position command \\
\(P w_{\text {inj }}\) & Fuel injector pulse-width \\
MAINSOI & Start of injection timing for main fuel injection pulse
\end{tabular}

The Model-Based Calibration Toolbox \({ }^{\text {TM }}\) was used to develop the tables that are available with the Powertrain Blockset.

\section*{Controller}

The controller governs the combustion process by commanding VGT rack position, EGR valve area percent, fuel injection timing, and injector pulse-width. Feedforward lookup tables, which are functions of measured engine speed and commanded torque, determine the control commands.

\section*{Air}

The controller commands the EGR valve area percent and VGT rack position. Changing the VGT rack position modifies the turbine flow characteristics. At low-requested torques, the rack position can reduce the exhaust back pressure, resulting in a low turbocharger speed and boost pressure. When the commanded fuel requires additional air mass flow, the rack position is set to close the turbocharger vanes, increasing the turbocharger speed and intake manifold boost pressure.

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed
\[
R P_{c m d}=f_{R P c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(R P_{c m d}\) is VGT rack position command, in percent.
- \(T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed
\[
E G R_{\text {cmd }}=f_{E G R c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(E G R_{\text {cmd }}\) is commanded EGR valve area percent, in percent.
- \(T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.


\section*{Fuel}

To initiate combustion, a CI engine injects fuel directly into the combustion chamber. After the injection, the fuel spontaneously ignites, increasing cylinder pressure. The total mass of the injected fuel and main injection timing determines the torque production.

Assuming constant fuel rail pressure, the CI controller commands the injector pulse-width based on the total requested fuel mass:
\[
P w_{i n j}=\frac{F_{C m d, t o t}}{S_{i n j}}
\]

The equation uses these variables.
\begin{tabular}{ll}
\(P w_{i n j}\) & Fuel injector pulse-width \\
\(S_{i n j}\) & Fuel injector slope \\
\(F_{c m d, t o t}\) & Commanded total fuel mass per injection \\
\(M A I N S O I\) & Main start-of-injection timing \\
\(N\) & Engine speed
\end{tabular}

The commanded total fuel mass per injection table is a function of the torque command and engine speed
\[
F_{c m d, t o t}=f_{F c m d, t o t}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(F_{c m d, t o t}=F\) is commanded total fuel mass per injection, in mg per cylinder.
- \(\quad \operatorname{Tr} q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.


The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed
\[
M A I N S O I=f\left(F_{c m d, t o t}, N\right)
\]
where:
- MAINSOI is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- \(\quad F_{c m d, t o t}=F\) is commanded fuel mass, in mg per injection.
- \(\quad N\) is engine speed, in rpm.


Idle Speed
When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.
\begin{tabular}{|l|l|}
\hline If & Idle Speed Controller \\
\hline \(\operatorname{Tr} q_{\text {cmd,input }}<\operatorname{Tr} q_{\text {idlecmd,enable }}\) & Enabled \\
\hline\(T r q_{\text {idlecmd,enable }} \leq \operatorname{Tr} q_{\text {cmd,input }}\) & Not enabled \\
\hline
\end{tabular}

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:
\[
C_{i d l e}(z)=K_{p, \text { idle }}+K_{i, \text { idle }} \frac{t_{s}}{z-1}
\]

The idle speed commanded torque must be less than the maximum commanded torque:
\(0 \leq T r q_{\text {idlecomd }} \leq T r q_{\text {idlecmd,max }}\)
Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ( \(\operatorname{Tr} q_{\text {cmd,input }}<\operatorname{Tr} q_{\text {idlecmd,enable }}\) ), the commanded engine torque is given by:
\(T r q_{c m d}=\max \left(T r q_{\text {cmd, input }} T r q_{\text {idlecmd }}\right)\).
The equations use these variables.
\begin{tabular}{ll}
\(\operatorname{Tr} q_{c m d}\) & Commanded engine torque \\
\(\operatorname{Tr} q_{c m d, \text { input }}\) & Input commanded engine torque \\
\(\operatorname{Tr} q_{\text {idlecmd,enable }}\) & Threshold for enabling idle speed controller \\
\(\operatorname{Tr} q_{\text {idlecmd }}\) & Idle speed controller commanded torque \\
\(\operatorname{Tr} q_{\text {idlecmd,max }}\) & Maximum commanded torque \\
\(N_{\text {idle }}\) & Base idle speed \\
\(K_{p, \text { idle }}\) & Idle speed controller proportional gain \\
\(K_{i, \text { idle }}\) & Idle speed controller integral gain
\end{tabular}

Speed Limiter
To prevent over revving the engine, the block implements an engine speed limit controller that limits the engine speed to the value specified by the Rev-limiter speed threshold parameter on the Controls > Idle Speed tab.

If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Estimator}

Using the CI Core Engine block, the CI Controller block estimates the air mass flow rate, EGR valve mass flow, exhaust back-pressure, engine torque, AFR, and exhaust temperature from sensor feedback. The Info port provides the estimated values, but block does not use them to determine the open-loop engine actuator commands.

\section*{Air Mass Flow}

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine SpeedDensity Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

\section*{EGR Valve Mass Flow}

To calculate the estimated exhaust gas recirculation (EGR) valve mass flow, the block calculates the EGR flow that would occur at standard temperature and pressure conditions, and then corrects the
flow to actual temperature and pressure conditions. The block EGR calculation uses estimated exhaust back-pressure, estimated exhaust temperature, standard temperature, and standard pressure.
\[
\dot{m}_{\text {egr, est }}=\dot{m}_{\text {egr, std }} \frac{P_{\text {exh, est }}}{P_{s t d}} \sqrt{\frac{T_{\text {std }}}{T_{\text {exh,est }}}}
\]
- The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area
\[
\dot{m}_{e g r, s t d}=f\left(\frac{M A P}{P_{\text {exh }}, \text { est }}, E G R a p\right)
\]
where:
- \(\dot{m}_{e g r, ~ s t d}\) is the standard EGR valve mass flow, in g/s.
- \(P_{\text {exh,est }}\) is the estimated exhaust back-pressure, in Pa.
- MAP is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.


The equations use these variables.
\begin{tabular}{ll}
\(\dot{m}_{\text {egr, est }}\) & Estimated EGR valve mass flow \\
\(\dot{m}_{\text {egr,std }}\) & Standard EGR valve mass flow \\
\(P_{\text {std }}\) & Standard pressure \\
\(T_{\text {std }}\) & Standard temperature \\
\(T_{\text {exh,est }}\) & Estimated exhaust manifold gas temperature \\
\(M A P\) & Measured cycle average intake manifold absolute pressure \\
\(P_{\text {exh,est }}\) & Estimated exhaust back-pressure \\
\(P_{\text {Amb }}\) & Absolute ambient pressure \\
EGRap & Measured EGR valve area percent
\end{tabular}

\section*{Exhaust Back-Pressure}

To estimate the EGR valve mass flow, the block requires an estimate of the exhaust back-pressure. To estimate the exhaust back-pressure, the block uses the ambient pressure and the turbocharger pressure ratio.
\[
P_{\text {exh, est }}=P_{A m b} P r_{\text {turbo }}
\]

For the turbocharger pressure ration calculation, the block uses two lookup tables. The first lookup table determines the approximate turbocharger pressure ratio as a function of turbocharger mass flow and corrected turbocharger speed. Using a second lookup table, the block corrects the approximate turbocharger pressure ratio for VGT rack position.
\[
P r_{t u r b o}=f\left(\dot{m}_{\text {airstd }}, N_{v g t c o r r}\right) f\left(V G T_{p o s}\right)
\]
where:
\[
N_{v g t c o r r}=\frac{N_{v g t}}{\sqrt{T_{\text {exh }, \text { est }}}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\dot{m}_{\text {egr, est }}\) & Estimated EGR valve mass flow \\
\(\dot{m}_{\text {egr, std }}\) & Standard EGR valve mass flow \\
\(\dot{m}_{\text {port,est }}\) & Estimated intake port mass flow rate \\
\(\dot{m}_{\text {airstd }}\) & Standard air mass flow \\
\(E G R a p\) & Measured EGR valve area \\
\(M A P\) & Measured cycle average intake manifold absolute pressure \\
\(M A T\) & Measured cycle average intake manifold gas absolute temperature \\
\(P_{\text {std }}\) & Standard pressure \\
\(T_{\text {std }}\) & Standard temperature \\
\(T_{\text {exh,est }}\) & Estimated exhaust manifold gas temperature \\
\(P r_{\text {vgtoorr }}\) & Turbocharger pressure ratio correction for VGT rack position \\
\(P r_{\text {turbo }}\) & Turbocharger pressure ratio \\
\(P_{\text {exh }, \text { est }}\) & Estimated exhaust back-pressure \\
\(P_{A m b}\) & Absolute ambient pressure \\
\(N_{\text {vgtorr }}\) & Corrected turbocharger speed \\
\(V G T_{\text {pos }}\) & Measured VGT rack position
\end{tabular}

The exhaust-back pressure calculation uses these lookup tables:
- The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected turbocharger speed, \(P r_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{v g t c o r r}\right)\), where:
- \(P r_{\text {turbo }}\) is the turbocharger pressure ratio, corrected for VGT speed.
- \(\dot{m}_{\text {airstd }}\) is the standard air mass flow, in \(\mathrm{g} / \mathrm{s}\).
- \(N_{\text {vgtoorr }}\) is the corrected turbocharger speed, in \(\mathrm{rpm} / \mathrm{K}^{\wedge}(1 / 2)\).


To calculate the standard air mass flow through the turbocharger, the block uses conservation of mass, the estimated intake port, and EGR mass flows (from the last estimated calculation). The calculation assumes negligible exhaust manifold filling dynamics.
\[
\dot{m}_{\text {airstd }}=\left(\dot{m}_{\text {port }, \text { est }}-\dot{m}_{\text {egr, est }}\right) \frac{P_{\text {std }}}{M A P} \sqrt{\frac{M A T}{T_{s t d}}}
\]
- The variable geometry turbocharger pressure ratio correction is a function of the rack position, \(P r_{\text {vgtcorr }}=f\left(V G T_{\text {pos }}\right)\), where:
- \(P r_{v g t c o r r}\) is the turbocharger pressure ratio correction.
- \(V G T_{\text {pos }}\) is the variable geometry turbocharger (VGT) rack position.


\section*{Engine Torque}

To calculate the engine torque, you can configure the block to use either of these torque models.
\begin{tabular}{|c|c|}
\hline Brake Torque Model & Description \\
\hline "CI Engine Torque Structure Model" & \begin{tabular}{l}
The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal: \\
- Start of injection (SOI) timing \\
- Exhaust back-pressure \\
- Burned fuel mass \\
- Intake manifold gas pressure, temperature, and oxygen percentage \\
- Fuel rail pressure \\
To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
\end{tabular} \\
\hline "CI Engine Simple Torque Model" & For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass. \\
\hline
\end{tabular}

\section*{Exhaust Temperature}

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.
\begin{tabular}{|c|c|c|}
\hline Torque Model & Description & Equations \\
\hline Simple Torque Lookup & Exhaust temperature lookup table is a function of the injected fuel mass and engine speed. & \(T_{\text {exh }}=f_{\text {Texh }}(F, N)\) \\
\hline Torque Structure & \begin{tabular}{l}
The nominal exhaust temperature, \(T e x h_{\text {nom }}\), is a product of these exhaust temperature efficiencies: \\
- SOI timing \\
- Intake manifold gas pressure \\
- Intake manifold gas temperature \\
- Intake manifold gas oxygen percentage \\
- Fuel rail pressure \\
- Optimal temperature \\
The exhaust temperature, Texh \(_{\text {nom }}\), is offset by a post temperature effect, \(\Delta T_{\text {post }}\) that accounts for post and late injections during the expansion and exhaust strokes.
\end{tabular} &  \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(F\) & Compression stroke injected fuel mass \\
\(N\) & Engine speed \\
\(T e x h\) & Exhaust manifold gas temperature \\
\(T e x h_{\text {opt }}\) & Optimal exhaust manifold gas temperature \\
\(\Delta T_{\text {post }}\) & Post injection temperature effect \\
\(T e x h_{\text {nom }}\) & Nominal exhaust temperature \\
\(S O I_{\text {exhteff }}\) & Main SOI exhaust temperature efficiency multiplier \\
\(\Delta S O I\) & Main SOI timing relative to optimal timing \\
\(M A P_{\text {exheff }}\) & Intake manifold gas pressure exhaust temperature efficiency multiplier \\
\(M A P_{\text {ratio }}\) & Intake manifold gas pressure ratio relative to optimal pressure ratio \\
\(\lambda\) & Intake manifold gas lambda \\
\(M A T_{\text {exheff }}\) & Intake manifold gas temperature exhaust temperature efficiency multiplier \\
\(\Delta M A T\) & Intake manifold gas temperature relative to optimal temperature \\
\(O 2 P_{\text {exheff }}\) & Intake manifold gas oxygen exhaust temperature efficiency multiplier \\
\(\Delta O 2 P\) & Intake gas oxygen percent relative to optimal \\
\(F U E L P_{\text {exheff }}\) & Fuel rail pressure exhaust temperature efficiency multiplier \\
\(\Delta F U E L P\) & Fuel rail pressure relative to optimal
\end{tabular}

\section*{Air-Fuel Ratio}

The measured engine speed and fuel injector pulse-width determine the commanded fuel mass flow rate:
\[
\dot{m}_{f u e l, c m d}=\frac{N S_{i n j} P w_{i n j} N_{c y l}}{C p s\left(\frac{60 s}{\min }\right)\left(\frac{1000 \mathrm{mg}}{g}\right)}
\]

The commanded total fuel mass flow and estimated port mass flow rates determine the estimated AFR:
\[
A F R_{e s t}=\frac{\dot{m}_{\text {port }, \text { est }}}{\dot{m}_{\text {fuel }, \text { cmd }}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(P w_{i n j}\) & Fuel injector pulse-width \\
\(A F R_{e s t}\) & Estimated air-fuel ratio \\
\(\dot{m}_{f u e l, c m d}\) & Commanded fuel mass flow rate \\
\(S_{i n j}\) & Fuel injector slope \\
\(N\) & Engine speed \\
\(N_{\text {cyl }}\) & Number of engine cylinders \\
\(C p s\) & Crankshaft revolutions per power stroke, rev/stroke \\
\(\dot{m}_{\text {port, est }}\) & Total estimated engine air mass flow at intake ports
\end{tabular}

\section*{Ports}

\section*{Input}

TrqCmd - Commanded engine torque
scalar
Commanded engine torque, \(T r q_{\text {cmd,input, }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
EngSpd - Measured engine speed
scalar
Measured engine speed, \(N\), in rpm.
Map - Measured intake manifold absolute pressure scalar

Measured intake manifold absolute pressure, MAP, in Pa.
Mat - Measured intake manifold absolute temperature
scalar
Measured intake manifold absolute temperature, MAT, in K.
AmbPrs - Ambient pressure
scalar
Absolute ambient pressure, \(P_{A m b}\), in Pa .

\section*{EgrVlvAreaPct - EGR valve area percent scalar}

Measured EGR valve area percent, EGRap, in \%.

\section*{VgtPos - VGT speed}
scalar
Measured VGT rack position, \(V G T_{\text {pos }}\).
VgtSpd - VGT speed
scalar
Measured VGT speed, \(N_{v g t}\) in rpm.

\section*{Ect - Engine cooling temperature}
scalar
Engine cooling temperature, \(T_{\text {coolant }}\), in K .
IgSw - Ignition switch
Boolean
State of the vehicle ignition switch, dimensionless.

\section*{Dependencies}

To create this port, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{ESSEnable - Engine Stop-Start Enable}

Boolean
Command to enable or disable the stop-start logic, dimensionless.

\section*{Dependencies}

To create this port, on the Stop-Start tab, select Enable Engine Stop-Start. Select External Enable Port.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|}
\hline Signal & Description & Variable & Units \\
\hline InjPW & Fuel injector pulse-width & \(P w_{\text {inj }}\) & ms \\
\hline EgrVlvAreaPctCmd & EGR valve area percent command & \(E G R_{\text {cmd }}\) & \% \\
\hline TurbRackPosCmd & VGT rack position command & \(R P_{\text {cmd }}\) & N/A \\
\hline TrqCmd & Engine torque & Tr \(q_{\text {cmd }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline FuelMassTotCmd & Commanded total fuel mass per injection & \(F_{c m d, t o t}\) & mg \\
\hline FuelMainSoi & Main start-of-injection timing & MAINSOI & degATDC \\
\hline FuelMassFlwCmd & Commanded fuel mass flow rate & \(\dot{m}_{\text {fuel, cmd }}\) & kg/s \\
\hline EstIntkPortMassFlw & Estimated port mass flow rate & \(\dot{m}_{\text {port, est }}\) & kg/s \\
\hline EstEngTrq & Estimated engine torque & Trq \({ }_{\text {est }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EstExhManGasTemp & Estimated exhaust manifold gas temperature & \(T_{\text {exh,est }}\) & K \\
\hline EstExhPrs & Estimated exhaust back-pressure & Pex & Pa \\
\hline EstEGRFlow & EstEGRFlow & EstEGRFlow & EstEGRFlow \\
\hline EstAfr & Estimated air-fuel ratio & \(A F R_{\text {est }}\) & N/A \\
\hline EngRevLimAct & Flag that indicates if rev-limiter control is active & N/A & N/A \\
\hline
\end{tabular}

\section*{InjPw - Fuel injector pulse-width}
scalar
Fuel injector pulse-width, \(P w_{i n j}\), in ms .

\section*{FuelMainSoi - Fuel main injecting timing}

\section*{scalar}

Main start-of-injection timing, MAINSOI, in degrees crank angle after top dead center (degATDC).

\section*{TurbRackPosCmd - Rack position scalar}

VGT rack position command, \(R P_{\text {cmd }}\).
EgrVlvAreaPctCmd - Intake cam phaser angle command scalar

EGR valve area percent command, \(E G R_{\text {cmd }}\).

\section*{Parameters}

\section*{Controls}

Air - EGR
EGR valve area percent, f_egramd - Lookup table array

The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed
\[
E G R_{c m d}=f_{E G R c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(E G R_{\text {cmd }}\) is commanded EGR valve area percent, in percent.
- \(\quad \mathrm{Tr} q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


Commanded torque breakpoints, f_egr_tq_bpt - Breakpoints
```

[10 26.4342 .8659 .2975 .7192 .14108 .6125141 .4157 .9174 .3190 .7207 .1

```
223.6 240] (default)|vector

Commanded torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).
Speed breakpoints, f_egr_n_bpt - Breakpoints
[1000 \(141118212232^{-} 264 \overline{3} 305434643875428646965107551859296339\) 6750] (default) | vector

Speed breakpoints, in rpm.
Air - VGR
```

VGT rack position table, f_rpcmd - Lookup table

```
array

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed
\[
R P_{c m d}=f_{R P c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(R P_{\text {cmd }}\) is VGT rack position command, in percent.
- \(\quad \operatorname{Tr} q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.


Commanded torque breakpoints, f_rp_tq_bpt - Breakpoints

223.6 240] (default) | vector

Breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Speed breakpoints, f_rp_n_bpt - Breakpoints}
[1000 1411 \(18212232 \quad 26433054346438754286469651075518592963396750\) ]
(default) | vector
Breakpoints, in rpm.
Fuel
Injector slope, Sinj - Slope
6.452 (default) | scalar

Fuel injector slope, \(S_{i n j}\), in \(\mathrm{mg} / \mathrm{ms}\).

\section*{Stoichiometric air-fuel ratio, afr_stoich - Ratio}
14.6 (default) | scalar

Stoichiometric air-fuel ratio, \(A F R_{\text {stoich }}\).

\section*{Fuel lower heating value, fuel_lhv - Heat 42e6 (default) | scalar}

Fuel lower heating value, in J/kg.

\section*{Fuel mass per injection table, f_fcmd_tot - Lookup table} array

The commanded total fuel mass per injection table is a function of the torque command and engine speed
\[
F_{c m d, t o t}=f_{F c m d, t o t}\left(T r q_{c m d}, N\right)
\]
where:
- \(F_{c m d, t o t}=F\) is commanded total fuel mass per injection, in mg per cylinder.
- \(T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Fuel main injection timing table, f_main_soi - Lookup table array}

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed
\[
\text { MAINSOI }=f\left(F_{c m d, t o t}, N\right)
\]
where:
- MAINSOI is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- \(F_{c m d, t o t}=F\) is commanded fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


Fuel main injection timing fuel breakpoints, f_main_soi_f_bpt - Breakpoints vector

Fuel main injection timing fuel breakpoints, in mg per injection.
Fuel main injection timing speed breakpoints, f_main_soi_n_bpt - Breakpoints [1000,1410.71428571429,1821.42857142857,2232.14285714286,2642.85714285714, 305 \(3.57142857143,3464.28571428571,3875,4285.71428571429,4696.42857142857,5107.14\) 285714286,5517.85714285714,5928.57142857143,6339.28571428572,6750] (default)| vector

Fuel main injection timing speed breakpoints, in rpm.
```

Commanded torque breakpoints, f_f_tot_tq_bpt - Breakpoints
[0 10 26.43 42.86 59.29 75.71 92.14 108.6 125 141.4 157.9 174.3 190.7 207.1
223.6 240] (default)|vector

```

Commanded torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).
Speed breakpoints, f_f_tot_n_bpt - Breakpoints
[1000 1411 \(182122322^{-} 2 \overline{6} 43 \overline{3} 0 \overline{5} 434643875428646965107551859296339\) 6750]
(default) | vector
Speed breakpoints, in rpm.
Idle Speed
Base idle speed, N_idle - Speed
750 (default) | scalar
Base idle speed, \(N_{\text {idle }}\), in rpm.
Enable torque command limit, Trq_idlecmd_enable - Torque
1 (default) | scalar
Torque to enable the idle speed controller, \(\mathrm{Tr}_{\text {idlecmd,enable, }}\) in \(\mathrm{N} \cdot \mathrm{m}\).
Maximum torque command, Trq_idlecmd_max - Torque
50 (default) | scalar
Maximum idle controller commanded torque, \(\operatorname{Tr}_{\text {idlecmd,max }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
Proportional gain, Kp_idle - PI Controller
0.05 (default) | scalar

Proportional gain for idle speed control, \(K_{p, i d l e}\), in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rpm}\).
Integral gain, Ki_idle - PI Controller
0.2 (default) |scalar

Integral gain for idle speed control, \(K_{i, \text { idle }}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rpm} \cdot \mathrm{s})\).
Rev-limiter speed threshold - Engine speed limit
scalar
Engine speed limit, \(N_{\text {lim }}\), in rpm.
If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Stop-Start}

Enable Engine Stop-Start - Select to enable the engine stop-start logic off (default) | on

Select to enable the engine stop-start logic. Selecting this option will activate additional parameters to modify the behavior of the Engine Stop-Start block.

\section*{External Enable Port - Create input port \\ off (default) | on}

Select to add a port to the engine controller block which enables or disables the stop-start logic.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{Engine stop time, EngStopTime [s] - Engine stop time \\ 5 (default) | scalar}

Engine stop time for the stop-start logic, in s.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.
Catalyst light off time, CatLight0ffTime [s] - Catalyst light off time 0 (default) | scalar

Catalyst light off time for the stop-start logic, in s.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{Sample time, Ts [s] - Sample time \\ 0.01 (default) | scalar}

Sample time for the stop-start logic, in s.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{Estimation}

Air

Number of cylinders, NCyl - Engine cylinders
4 (default) | scalar
Number of engine cylinders, \(N_{\text {cyl }}\).
Crank revolutions per power stroke, Cps - Revolutions per stroke 2 (default) | scalar

Crankshaft revolutions per power stroke, \(C p s\), in rev/stroke.

Total displaced volume, Vd - Volume
0.0015 (default)| scalar

Displaced volume, \(V_{d}\), in \(\mathrm{m}^{\wedge} 3\).

Ideal gas constant air, Rair - Constant
287 (default) | scalar
Ideal gas constant, \(R_{\text {air }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure
101325 (default)| scalar
Standard air pressure, \(P_{s t d}\), in Pa.
Air standard temperature, Tstd - Temperature
293 . 15 (default) | scalar
Standard air temperature, \(T_{s t d}\), in K .
Speed density volumetric efficiency, f_nv - Lookup table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed
\[
\eta_{\nu}=f_{\eta_{\nu}}(M A P, N)
\]
where:
- \(\eta_{\nu}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(\quad N\) is engine speed, in rpm.


Speed density intake manifold pressure breakpoints, f_nv_prs_bpt - Breakpoints [95 100.3 105.7 111116.4121 .7127 .1132 .4137 .8143 .1148 .4153 .8159 .1
164.5169 .8175 .2180 .5185 .9191 .2196 .6201 .9207 .2212 .6217 .9223 .3228 .6
234239.3244 .7 250] (default)|vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.
```

Speed density engine speed breakpoints, f_nv_n_bpt - Breakpoints
[750 956.9 1164 1371 1578 1784 1991 2198 2405 2612 2819 3026 3233 3440 3647
3853 4060 4267 4474 4681 4888 5095 5302 5509 5716 5922 6129 6336 6543 6750]
(default) | vector

```

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.
EGR valve standard flow calibration, f_egr_stdflow - Lookup table array

The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area
\[
\dot{m}_{e g r, s t d}=f\left(\frac{M A P}{P_{\text {exh }, \text { est }}}, E G R a p\right)
\]
where:
- \(\dot{m}_{e g r, ~ s t d}\) is the standard EGR valve mass flow, in g/s.
- \(P_{\text {exh,est }}\) is the estimated exhaust back-pressure, in Pa.
- \(M A P\) is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.


EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt Breakpoints
vector
EGR valve standard flow pressure ratio breakpoints, dimensionless.
EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt Breakpoints
vector
EGR valve standard flow area percent breakpoints, in percent.
```

Turbocharger pressure ratio, f_turbo_pr - Lookup table
array

```

The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected turbocharger speed, \(P r_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{v g t c o r r}\right)\), where:
- \(P r_{\text {turbo }}\) is the turbocharger pressure ratio, corrected for VGT speed.
- \(\dot{m}_{\text {airstd }}\) is the standard air mass flow, in \(\mathrm{g} / \mathrm{s}\).
- \(N_{v g t c o r r}\) is the corrected turbocharger speed, in rpm \(/ K^{\wedge}(1 / 2)\).


Turbocharger pressure ratio standard flow breakpoints, f_turbo_pr_stdflow_bpt - Breakpoints
vector
Turbocharger pressure ratio standard flow breakpoints, in \(\mathrm{g} / \mathrm{s}\).

\section*{Turbocharger pressure ratio corrected speed breakpoints, f_turbo_pr_corrspd_bpt - Breakpoints \\ vector}

Turbocharger pressure ratio corrected speed breakpoints, in \(\mathrm{rpm} / \mathrm{K}^{\wedge}(1 / 2)\).
Turbocharger pressure ratio VGT position correction, f_turbo_pr_vgtposcorr Lookup table
array
The variable geometry turbocharger pressure ratio correction is a function of the rack position, \(P r_{\text {vgtoorr }}=f\left(V G T_{\text {pos }}\right)\), where:
- \(P r_{v g t o o r r}\) is the turbocharger pressure ratio correction.
- \(V G T_{\text {pos }}\) is the variable geometry turbocharger (VGT) rack position.


Turbocharger pressure ratio VGT position correction breakpoints, f_turbo_pr_vgtposcorr_bpt - Breakpoints
vector
Turbocharger pressure ratio VGT position correction breakpoints, dimensionless.

\section*{Torque - Simple Torque Lookup}

Torque table, f_tq_nf - Lookup table
array
For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, \(T_{\text {brake }}=f_{T n f}(F, N)\), where:
- \(T q=T_{\text {brake }}\) is engine brake torque after accounting for engine mechanical and pumping friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt - Breakpoints

39.285742 .857146 .4286 50] (default)| vector

Torque table fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table speed breakpoints, f_tq_nf_n_bpt - Breakpoints
[1000 1410.7143 1821.4286 2232.1429 2642.85713053 .57143464 .28573875
4285.71434696 .42865107 .14295517 .85715928 .57146339 .2857 6750] (default) |
vector
Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Torque - Torque Structure}

Fuel mass per injection breakpoints, f_tqs_f_bpt - Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Engine speed breakpoints, f_tqs_n_bpt - Breakpoints
[500 750 1000 125015001750200022502500275030003250350037504000\(]\)
(default) | vector
Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal main start of injection timing, f_tqs_mainsoi - Optimal MAINSOI array}

The optimal main start of injection (SOI) timing lookup table, \(f_{\text {SOI }}\), is a function of the engine speed and injected fuel mass, \(S O I_{c}=f_{\text {SoIc }}(F, N)\), where:
- \(S O I_{c}\) is optimal SOI timing, in degATDC.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake manifold gas pressure, f_tqs_map - Optimal intake MAP array}

The optimal intake manifold gas pressure lookup table, \(f_{\text {MAP }}\), is a function of the engine speed and injected fuel mass, MAP \(=f_{\text {MAP }}(F, N)\), where:
- MAP is optimal intake manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal exhaust manifold gas pressure, f_tqs_emap - Optimal exhaust MAP array}

The optimal exhaust manifold gas pressure lookup table, \(f_{\text {EMAP }}\), is a function of the engine speed and injected fuel mass, \(E M A P=f_{\text {EMAP }}(F, N)\), where:
- EMAP is optimal exhaust manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Optimal intake manifold gas temperature, f_tqs_mat - Optimal intake MAT array

The optimal intake manifold gas temperature lookup table, \(f_{\text {MAT }}\), is a function of the engine speed and injected fuel mass, \(M A T=f_{\text {MAT }}(F, N)\), where:
- MAT is optimal intake manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Optimal intake gas oxygen percent, f_tqs_o2pct - Optimal intake gas oxygen array

The optimal intake gas oxygen percent lookup table, \(f_{02}\), is a function of the engine speed and injected fuel mass, O2PCT \(=f_{O 2}(F, N)\), where:
- O2PCT is optimal intake gas oxygen, in percent.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal fuel rail pressure, f_tqs_fuelpress - Optimal fuel rail pressure array}

The optimal fuel rail pressure lookup table, \(f_{\text {fuelp }}\), is a function of the engine speed and injected fuel mass, \(F U E L P=f_{\text {fuelp }}(F, N)\), where:
- FUELP is optimal fuel rail pressure, in MPa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal gross indicated mean effective pressure, f_tqs_imepg - Optimal mean effective pressure \\ array}

The optimal gross indicated mean effective pressure lookup table, \(f_{\text {imepg }}\), is a function of the engine speed and injected fuel mass, \(I M E P G=f_{\text {imepg }}(F, N)\), where:
- IMEPG is optimal gross indicated mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal friction mean effective pressure, f_tqs_fmep - Optimal friction mean effective pressure \\ array}

The optimal friction mean effective pressure lookup table, \(f_{\text {fmep }}\), is a function of the engine speed and injected fuel mass, \(F M E P=f_{\text {fmep }}(F, N)\), where:
- \(F M E P\) is optimal friction mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal pumping mean effective pressure, f_tqs_pmep - Optimal pumping mean effective pressure \\ ```
array
```}

The optimal pumping mean effective pressure lookup table, \(f_{\text {pmep }}\), is a function of the engine speed and injected fuel mass, \(P M E P=f_{\text {pmep }}(F, N)\), where:
- \(\quad P M E P\) is optimal pumping mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Friction multiplier as a function of temperature, f_tqs_fric_temp_mod Friction multiplier \\ array}

Friction multiplier as a function of temperature, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt - Breakpoints vector

Friction multiplier temperature breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff MAINSOI efficiency multiplier
array
The main start of injection (SOI) timing efficiency multiplier lookup table, \(f_{\text {SoIeff }}\), is a function of the engine speed and main SOI timing relative to optimal timing, \(S O I_{\text {eff }}=f_{\text {SoIeff }}(\Delta S O I, N)\), where:
- \(S O I_{e f f}\) is main SOI timing efficiency multiplier, dimensionless.
- \(\triangle\) SOI is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing relative to optimal timing breakpoints, f_tqs_mainsoi_delta_bpt - Breakpoints vector

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff - Intake pressure efficiency multiplier
array
The intake manifold gas pressure efficiency multiplier lookup table, \(f_{\text {MAPeff, }}\) is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {eff }}=f_{\text {MAPeff }}\left(M A P_{\text {ratio }}, \lambda\right)\), where:
- \(M A P_{\text {eff }}\) is intake manifold gas pressure efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, f_tqs_map_ratio_bpt - Breakpoints
\([0.8 ; 0.85 ; 0.9 ; \overline{0} .95 ; 1 ; 1.05 ; 1 . \overline{1} ; 1.15 ; 1.2 ; 1.25 ; 1.3 ; 1.35 ; 1.4 ; 1.45 ; 1.5]\) (default)| vector

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt - Breakpoints
[1.5 1.678571428571429 1.857142857142857 2.0357142857142862 .214285714285714
2.3928571428571432 .5714285714285712 .75 2.928571428571429 3.107142857142857
3.2857142857142863 .4642857142857143 .6428571428571433 .821428571428572 4]
(default) | vector
Intake manifold gas lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff - Intake temperature efficiency multiplier \\ array}

The intake manifold gas temperature efficiency multiplier lookup table, \(f_{\text {MATeff, }}\) is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {eff }}=\) \(f_{\text {MATeff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {eff }}\) is intake manifold gas temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K .
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature relative to optimal gas temperature breakpoints, f_tqs_mat_delta_bpt - Breakpoints \\ [-55;-50;-45;-40;-35;-30;-25;-20;-15;-10;-5;0;5;10;15] (default)| vector}

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K .

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff - Intake oxygen efficiency multiplier \\ array}

The intake manifold gas oxygen efficiency multiplier lookup table, \(f_{\text {O2Peff }}\), is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {eff }}=f_{\text {o2Peff }}(\Delta O 2 P, N)\), where:
- \(O 2 P_{\text {eff }}\) is intake manifold gas oxygen efficiency multiplier, dimensionless.
- \(\triangle O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake gas oxygen percent relative to optimal breakpoints, f_tqs_o2pct_delta_bpt - Breakpoints vector

Intake gas oxygen percent relative to optimal breakpoints, in percent.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff - Efficiency multiplier
array
The fuel rail pressure efficiency multiplier lookup table, \(f_{\text {FUELPeff }}\), is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {eff }}=f_{\text {FUELPeff }}(\triangle F U E L P, N)\), where:
- FUELP \(P_{\text {eff }}\) is fuel rail pressure efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt

\section*{- Breakpoints}

\section*{vector}

Fuel rail pressure relative to optimal breakpoints, in MPa.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel mass injection type identifier, f_tqs_f_inj_type - Type identifier 0 (default) | scalar

Fuel mass injection type identifier, dimensionless.

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Pilot & 0 \\
\hline Main & 1 \\
\hline Post & 2 \\
\hline Passed & 3 \\
\hline
\end{tabular}

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr - Post inject correction \\ array}

The indicated mean effective pressure post inject correction lookup table, \(f_{\text {IMEPpost }}\), is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(\Delta I M E P_{\text {post }}=\) \(f_{\text {IMEPpost }}\left(\Delta S O I_{\text {post }}, F_{\text {post }}\right)\), where:
- \(\triangle I M E P_{\text {post }}\) is indicated mean effective pressure post inject correction, in Pa.
- \(\Delta S O I_{\text {post }}\) is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- \(F_{\text {post }}\) is indicated mean effective pressure post inject mass sum, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Indicated mean effective pressure post inject mass sum breakpoints,
f_tqs_f_post_sum_bpt - Breakpoints
[0 3.571428571428572 7.142857142857143 10.71428571428571 14.28571428571429
17.85714285714286 21.42857142857143 25 28.57142857142857 32.14285714285715

```
35.7142857142857239 .2857142857142842 .8571428571428546 .42857142857143 50] (default) | vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject start of inject timing centroid breakpoints, f_tqs_soi_post_cent_bpt - Breakpoints
\(\left[\begin{array}{llll}150 & 160.71428 \overline{5} 714 \overline{2} 857 & 171 . \overline{4} 285714285714 & 182.1428571428571192 .8571428571429\end{array}\right.\)
203.5714285714286214 .2857142857143225235 .7142857142857246 .4285714285714
257.1428571428571267 .8571428571429278 .5714285714286289 .2857142857143 300] (default) | vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit Maximum SOI angle for burned fuel
500 (default) | scalar
Maximum start of injection angle for burned fuel, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Exhaust}

Exhaust gas specific heat at constant pressure, cp_exh - Specific heat 1005 (default) | scalar

Exhaust gas-specific heat, \(C p_{e x h}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Exhaust Temperature - Simple Torque Lookup
Exhaust temperature table, f_t_exh - Lookup table
array
The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed
\[
T_{e x h}=f_{T e x h}(F, N)
\]
where:
- \(T_{e x h}\) is exhaust temperature, in K.
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
```

Fuel mass per injection breakpoints, f_t_exh_f_bpt - Breakpoints

```

```

39.285742 .857146 .4286 50] (default)|array

```

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Speed breakpoints, f_t_exh_n_bpt - Breakpoints
[1000 1410.7143 1821.4 \(\overline{2} 86 \overline{2} 2 \overline{3} 2.14292642 .85713053 .57143464 .28573875\)
4285.71434696 .42865107 .14295517 .85715928 .57146339 .2857 6750] (default)|
array
Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Exhaust Temperature - Torque Structure}

Optimal exhaust manifold gas temperature, f_tqs_exht - Optimal exhaust manifold gas temperature
array
The optimal exhaust manifold gas temperature lookup table, \(f_{\text {Texh }}\), is a function of the engine speed engine speed and injected fuel mass, \(\operatorname{Texh}_{\text {opt }}=f_{\text {Texh }}(F, N)\), where:
- \(T e x h_{\text {opt }}\) is optimal exhaust manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff - Main SOI timing efficiency multiplier array

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, \(f_{\text {SOIexhteff, }}\), is a function of the engine speed engine speed and injected fuel mass, \(S O I_{\text {exhteff }}=\) \(f_{\text {Solexhteff }}(\Delta S O I, N)\), where:
- \(S O I_{\text {exhteff }}\) is main SOI exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle\) SOI is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas pressure exhaust temperature efficiency multiplier, f_tqs_exht_map_eff - Intake manifold efficiency multiplier
array
The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, \(f_{\text {MAPexheff, }}\) is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {exheff }}=f_{\text {MAPexheff }}\left(M A P_{\text {ratio }}, \lambda\right)\), where:
- \(M A P_{\text {exheff }}\) is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas temperature exhaust temperature efficiency multiplier, f_tqs_exht_mat_eff - Intake manifold efficiency multiplier array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, \(f_{\text {MATexheff }}\), is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {exheff }}=f_{\text {MATexheff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {exheff }}\) is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K .
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas oxygen exhaust temperature efficiency multiplier, f_tqs_exht_o2pct_eff - Intake manifold efficiency multiplier array

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, \(f_{\text {o2Pexheff }}\), is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {exheff }}=\) \(f_{\text {ozPexheff }}(\triangle O 2 P, N)\), where:
- \(O 2 P_{\text {exheff }}\) is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Fuel rail pressure exhaust temperature efficiency multiplier, f_tqs_exht_fuelpress_eff - Fuel rail pressure exhaust temperature efficiency multiplier array}

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, \(f_{\text {FUELPexheff, }}\) is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {exheff }}=\) \(f_{\text {FUELPexheff }}(\Delta F U E L P, N)\), where:
- FUELP \(P_{\text {exheff }}\) is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

Post-injection cylinder wall heat loss transfer coefficient, f_tqs_exht_post_inj_wall_htc - Post-injection offset
0 (default) | scalar
Post-injection cylinder wall heat loss transfer coefficient, in W/K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

CI Core Engine | Mapped CI Engine

\section*{Topics}
"Engine Calibration Maps"
"Generate Mapped CI Engine from a Spreadsheet"

Introduced in R2017a

\section*{Cl Core Engine}

Compression-ignition engine from intake to exhaust port

\section*{Description}

The CI Core Engine block implements a compression-ignition (CI) engine from intake to the exhaust port. You can use the block for hardware-in-the-loop (HIL) engine control design or vehicle-level fuel economy and performance simulations.

The CI Core Engine block calculates:
- Brake torque
- Exhaust temperature
- Air-fuel ratio (AFR)
- Fuel rail pressure
- Engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

\section*{Air Mass Flow}

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine SpeedDensity Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

\section*{Brake Torque}

To calculate the engine torque, you can configure the block to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "CI Engine Torque Structure & \begin{tabular}{l}
The CI core engine torque structure model determines the engine \\
torque by reducing the maximum engine torque potential as these \\
engine conditions vary from nominal:
\end{tabular} \\
& \begin{tabular}{ll}
- & Start of injection (SOI) timing
\end{tabular} \\
& - \begin{tabular}{l}
Exhaust back-pressure
\end{tabular} \\
& - \(\quad\) Burned fuel mass \\
& Intake manifold gas pressure, temperature, and oxygen \\
& \begin{tabular}{l}
To account for the effect of post-inject fuel on torque, the model \\
uses a calibrated torque offset table.
\end{tabular} \\
\hline "CI Engine Simple Torque & \begin{tabular}{l}
For the simple engine torque calculation, the CI engine uses a \\
torque lookup table map that is a function of engine speed and \\
injected fuel mass.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fuel Flow}

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Pilot & 0 \\
\hline Main & 1 \\
\hline Post & 2 \\
\hline Passed & 3 \\
\hline
\end{tabular}

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

To calculate the engine fuel mass flow, the CI Core Engine block uses fuel mass flow delivered by the injectors and the engine airflow.
\[
\dot{m}_{\text {fuel }}=\frac{N \cdot N_{\text {cyl }}}{C p s\left(\frac{60 s}{\min }\right)\left(\frac{1000 \mathrm{mg}}{g}\right)} \sum m_{\text {fuel, inj }}
\]

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{\text {fuel }}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{1000 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{f u e l}}
\]

The equation uses these variables.
\[
\dot{m}_{\text {fuel }} \quad \text { Fuel mass flow, } \mathrm{g} / \mathrm{s}
\]
\begin{tabular}{ll}
\(m_{\text {fuel,inj }}\) & Fuel mass per injection \\
\(C p s\) & Crankshaft revolutions per power stroke, rev/stroke \\
\(N_{c y l}\) & Number of engine cylinders \\
\(N\) & Engine speed, rpm \\
\(Q_{\text {fuel }}\) & Volumetric fuel flow \\
\(S g_{\text {fuel }}\) & Specific gravity of fuel
\end{tabular}

The block uses the internal signal FlwDir to track the direction of the flow.

\section*{Air-Fuel Ratio}

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.
\[
A F R=\frac{\dot{m}_{\text {air }}}{\dot{m}_{\text {fuel }}}
\]

The CI Core Engine uses this equation to calculate the relative AFR.
\[
\lambda=\frac{A F R}{A F R_{S}}
\]

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.
\[
E G R_{p c t}=100 \frac{\dot{m}_{\text {intk }, b}}{\dot{m}_{\text {intk }}}=100 y_{\text {intk }, b}
\]

The equations use these variables.
\begin{tabular}{ll}
\(A F R\) & Air-fuel ratio \\
\(A F R_{S}\) & Stoichiometric air-fuel ratio \\
\(\dot{m}_{\text {intk }}\) & Engine air mass flow \\
\(\dot{m}_{f u e l}\) & Fuel mass flow \\
\(\lambda\) & Relative AFR \\
\(y_{\text {intk }, b}\) & Intake burned mass fraction \\
\(E G R_{\text {pct }}\) & EGR percent \\
\(\dot{m}_{\text {intk,b }}\) & Recirculated burned gas mass flow rate
\end{tabular}

\section*{Exhaust Temperature}

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.
\begin{tabular}{|c|c|c|}
\hline Torque Model & Description & Equations \\
\hline Simple Torque Lookup & Exhaust temperature lookup table is a function of the injected fuel mass and engine speed. & \(T_{\text {exh }}=f_{\text {Texh }}(F, N)\) \\
\hline Torque Structure & \begin{tabular}{l}
The nominal exhaust temperature, \(T e x h_{\text {nom }}\), is a product of these exhaust temperature efficiencies: \\
- SOI timing \\
- Intake manifold gas pressure \\
- Intake manifold gas temperature \\
- Intake manifold gas oxygen percentage \\
- Fuel rail pressure \\
- Optimal temperature \\
The exhaust temperature, \(\operatorname{Texh}_{\text {nom }}\), is offset by a post temperature effect, \(\Delta T_{\text {post }}\), that accounts for post and late injections during the expansion and exhaust strokes.
\end{tabular} & \[
\begin{aligned}
& T_{\text {exhnom }}=\text { SOI }_{\text {exhteff }} M A P_{\text {exhteff }} M A T_{\text {exhteff }} C \\
& T_{\text {exh }}=T_{\text {exhnom }}+\Delta T_{\text {post }} \\
& S O I_{\text {exhteff }}=f_{\text {SOI }_{\text {exhteff }}}(\Delta S O I, N) \\
& M A P_{\text {exhteff }}=f_{M A P_{\text {exhteff }}}\left(M A P_{\text {ratio }}, \lambda\right) \\
& M A T_{\text {exhteff }}=f_{M A T_{\text {exhteff }}}(\Delta M A T, N) \\
& O 2 p_{\text {exhteff }}=f_{\text {O2p }}^{\text {exhteff }}
\end{aligned}(\Delta O 2 p, N)
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(F\) & Compression stroke injected fuel mass \\
\(N\) & Engine speed \\
\(T e x h\) & Exhaust manifold gas temperature \\
\(T e x h_{\text {opt }}\) & Optimal exhaust manifold gas temperature \\
\(\Delta T_{\text {post }}\) & Post injection temperature effect \\
\(T e x h_{\text {nom }}\) & Nominal exhaust temperature \\
\(S O I_{\text {exhteff }}\) & Main SOI exhaust temperature efficiency multiplier \\
\(\Delta S O I\) & Main SOI timing relative to optimal timing \\
\(M A P_{\text {exheff }}\) & Intake manifold gas pressure exhaust temperature efficiency multiplier \\
\(M A P_{\text {ratio }}\) & Intake manifold gas pressure ratio relative to optimal pressure ratio \\
\(\lambda\) & Intake manifold gas lambda \\
\(M A T_{\text {exheff }}\) & Intake manifold gas temperature exhaust temperature efficiency multiplier \\
\(\Delta M A T\) & Intake manifold gas temperature relative to optimal temperature \\
\(O 2 P_{\text {exheff }}\) & Intake manifold gas oxygen exhaust temperature efficiency multiplier \\
\(\Delta O 2 P\) & Intake gas oxygen percent relative to optimal \\
\(F U E L P_{\text {exheff }}\) & Fuel rail pressure exhaust temperature efficiency multiplier \\
\(\Delta F U E L P\) & Fuel rail pressure relative to optimal
\end{tabular}

\section*{EO Exhaust Emissions}

The block calculates these engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.
\[
h_{e x h}=C p_{e x h} T_{e x h}
\]

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.
\[
\dot{m}_{\text {exh }}=\dot{m}_{\text {intake }}+\dot{m}_{\text {fuel }}
\]

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.
\[
\begin{aligned}
& y_{e x h, i}=f_{i _f r a c}\left(T_{b r a k e}, N\right) \\
& \dot{m}_{e x h, i}=\dot{m}_{e x h} y_{e x h, i}
\end{aligned}
\]

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.
\[
y_{e x h, \text { air }}=\max \left[y_{\text {in, air }}-\frac{\dot{m}_{\text {fuel }}+y_{\text {in, fuel }} \dot{m}_{\text {intake }}}{\dot{m}_{\text {fuel }}+\dot{m}_{\text {intake }}} A F R_{S}\right]
\]

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.
\[
y_{e x h, b}=\max \left[\left(1-y_{e x h, a i r}-y_{e x h, H C}\right), 0\right]
\]

The equations use these variables.
\(T_{\text {exh }} \quad\) Engine exhaust temperature
\(h_{e x h} \quad\) Exhaust manifold inlet-specific enthalpy
\(C p_{e x h} \quad\) Exhaust gas specific heat
\(\dot{m}_{\text {intk }} \quad\) Intake port air mass flow rate
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow rate
\(\dot{m}_{\text {exh }} \quad\) Exhaust mass flow rate
\(y_{i n, \text { fuel }}\) Intake fuel mass fraction
\(y_{\text {exh,i }}\) Exhaust mass fraction for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM
\(\dot{m}_{e x h, i} \quad\) Exhaust mass flow rate for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM
\(T_{\text {brake }} \quad\) Engine brake torque
\(N \quad\) Engine speed
\(y_{\text {exh,air }} \quad\) Exhaust air mass fraction
\(y_{\text {exh,b }} \quad\) Exhaust air burned mass fraction

\section*{Power Accounting}

For the power accounting, the block implements equations that depend on Torque model.
When you set Torque model to Simple Torque Lookup, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{5}{*}{PwrInfo} & \multirow[t]{5}{*}{} & PwrIntk HeatFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & & PwrExhH eatFlw & Exhaust heat flow & \(-\dot{m}_{e x h} h_{e x h}\) \\
\hline & & \begin{tabular}{l}
PwrCrks \\
hft
\end{tabular} & Crankshaft power & \(-T_{\text {brake }} \omega\) \\
\hline & & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrLoss & All losses & \(T_{\text {brake }} \omega-\dot{m}_{f u e l}^{L} L H V-\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|l|}{ Bus Signal } & Description & Equations \\
\hline & \begin{tabular}{l}
PwrStored \\
- Stored \\
energy rate of \\
change \\
- \\
Positive \\
signals \\
indicate an \\
increase \\
- \\
Negative \\
signals \\
indicate a \\
decrease
\end{tabular} \\
& & \\
\hline
\end{tabular}

When you set Torque model to Torque Structure, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{7}{*}{PwrInfo} & \multirow[t]{7}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block \\
PwrNotTrns frd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrIntk HeatFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & & PwrExhH eatFlw & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline & & PwrCrks
hft & Crankshaft power & \(-T_{\text {brake }} \omega\) \\
\hline & & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrFric Loss & Friction loss & \(-T_{\text {fric }} \omega\) \\
\hline & & PwrPump Loss & Pumping loss & \(-T_{\text {pump }} \omega\) \\
\hline & & \begin{tabular}{l}
PwrHeat \\
TrnsfrL oss
\end{tabular} & Heat transfer loss & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V-\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }} \\
& +T_{\text {fric }} \omega+T_{\text {pump }} \omega
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline & \begin{tabular}{ll}
PwrStored \\
- Stored \\
energy rate of \\
change \\
• & Positive \\
signals \\
indicate an \\
increase \\
- \\
Negative \\
signals \\
indicate a \\
decrease
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(h_{\text {exh }}\) & Exhaust manifold inlet-specific enthalpy \\
\(h_{\text {intk }}\) & Intake port specific enthalpy \\
\(\dot{m}_{\text {intk }}\) & Intake port air mass flow rate \\
\(\dot{m}_{\text {fuel }}\) & Fuel mass flow rate \\
\(\dot{m}_{\text {exh }}\) & Exhaust mass flow rate \\
\(\omega\) & Engine speed \\
\(T_{\text {brake }}\) & Brake torque \\
\(T_{\text {pump }}\) & Engine pumping work offset to inner torque \\
\(T_{\text {fric }}\) & Engine friction torque \\
\(L H V\) & Fuel lower heating value
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{FuelMass - Fuel injector pulse-width}
vector
Fuel mass per injection, \(m_{\text {fuel }, \text { inj }}\), in \(m g\) per injection.

\section*{Soi - Start of fuel injection timing}
vector
Fuel injection timing, SOI, in degrees crank angle after top dead center (degATDC). First vector value, Soi(1), is main injection timing.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{EngSpd - Engine speed \\ scalar}

Engine speed, \(N\), in rpm.

\section*{FuelPrs - Fuel rail pressure \\ scalar}

Fuel rail pressure, FUELP, in MPa.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Ect - Engine cooling temperature}
scalar
Engine cooling temperature, \(T_{\text {coolant, }}\), in K.
Dependencies
To enable this parameter, for Torque model, select Torque Structure.

\section*{Intk - Intake port pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the upstream:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Intake port mass fractions, dimensionless. Exhaust gas recirculation (EGR) mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the exhaust:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline IntkGasMassFlw & \begin{tabular}{l}
Engine intake air mass \\
flow.
\end{tabular} & \(\dot{m}_{\text {air }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline IntkAirMassFlw & \begin{tabular}{l}
Engine intake port mass \\
flow.
\end{tabular} & \(\dot{m}_{\text {intk }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline NrmlzdAirChrg & \begin{tabular}{l}
Engine load (that is, \\
normalized cylinder air \\
mass) corrected for final \\
steady-state cam phase \\
angles
\end{tabular} & \(L\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline Afr & \begin{tabular}{l}
Air-fuel ratio at engine \\
exhaust port
\end{tabular} & \(A F R\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline FuelMassFlw & Fuel flow into engine & \(\dot{m}_{\text {fuel }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline FuelVolFlw & Volumetric fuel flow & \(Q_{\text {fuel }}\) & \(\mathrm{m} / \mathrm{s}\) \\
\hline ExhManGasTemp & \begin{tabular}{l}
Exhaust gas temperature \\
at exhaust manifold inlet
\end{tabular} & \(T_{\text {exh }}\) & K \\
\hline EngTrq & Engine brake torque & \(T_{\text {brake }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EngSpd & Engine speed & \(N\) & rpm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{IntkCamPhase} & Intake cam phaser angle & \(\varphi_{I C P} \mathrm{i}\) & degrees crank advance \\
\hline \multicolumn{3}{|l|}{ExhCamPhase} & Exhaust cam phaser angle & \(\varphi_{E C P}\) & degrees crank retard \\
\hline \multicolumn{3}{|l|}{CrkAng} & Engine crankshaft absolute angle & \begin{tabular}{l}
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where Cps is crankshaft revolutions per power stroke
\end{tabular} & degrees crank angle \\
\hline \multicolumn{3}{|l|}{EgrPct} & EGR percent & \(E G R_{\text {pct }}\) & N/A \\
\hline \multicolumn{3}{|l|}{EoAir} & EO air mass flow rate & \(\dot{m}_{\text {exh }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoBrndGas} & EO burned gas mass flow rate & \(y_{\text {exh,b }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoHC} & EO hydrocarbon emission mass flow rate & \(Y_{\text {exh,HC }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoC0} & EO carbon monoxide emission mass flow rate & \(y_{\text {exh,co }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoN0x} & EO nitric oxide and nitrogen dioxide emissions mass flow rate & \(y_{\text {exh,NOx }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoC02} & EO carbon dioxide emission mass flow rate & \(y_{\text {exh, }}\) Co2 & kg/s \\
\hline \multicolumn{3}{|l|}{EoPm} & EO particulate matter emission mass flow rate & \(y_{\text {exh, } P \mathrm{M}}\) & kg/s \\
\hline \multirow[t]{6}{*}{PwrIn
fo} & \multirow[t]{3}{*}{PwrTrns frd} & PwrIntkHea tFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) & W \\
\hline & & PwrExhHeat Flw & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) & W \\
\hline & & PwrCrkshft & Crankshaft power & - \(T_{\text {brake }} \omega\) & W \\
\hline & \multirow[t]{3}{*}{PwrNotT rnsfrd} & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) & W \\
\hline & & PwrLoss & \begin{tabular}{l}
For Torque model set to Simple Torque Lookup: \\
All losses
\end{tabular} & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V \\
& -\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }}
\end{aligned}
\] & W \\
\hline & & \[
\begin{aligned}
& \text { PwrFricLos } \\
& \mathrm{s}
\end{aligned}
\] & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Friction loss
\end{tabular} & \(-T_{\text {fric }} \omega\) & W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description & Variable & Units \\
\hline & PwrPumpLos S & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Pumping loss
\end{tabular} & \(-T_{\text {pump }} \omega\) & W \\
\hline & PwrHeatTrn sfrLoss & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Heat transfer loss
\end{tabular} & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V \\
& -\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }} \\
& +T_{\text {fric }} \omega+T_{\text {pump }} \omega
\end{aligned}
\] & W \\
\hline PwrStor ed & Not used & & & \\
\hline
\end{tabular}

\section*{EngTrq - Engine brake torque scalar}

Engine brake torque, \(T_{\text {brake }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Intk - Intake port mass flow rate, heat flow rate, temperature, mass fraction}
two-way connector port
Bus containing:
- MassFlwRate - Intake port mass flow rate, in kg/s
- HeatFlwRate - Intake port heat flow rate, in J/s
- ExhManGasTemp - Intake port temperature, in K
- MassFrac - Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port mass flow rate, heat flow rate, temperature, mass fraction}
two-way connector port
Bus containing:
- MassFlwRate - Exhaust port mass flow rate, in kg/s
- HeatFlwRate - Exhaust heat flow rate, in J/s
- ExhManGasTemp - Exhaust port temperature, in K
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Torque model - Select torque model}

Torque Structure (default)|Simple Torque Lookup
To calculate the engine torque, you can configure the block to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "CI Engine Torque Structure & \begin{tabular}{l}
The CI core engine torque structure model determines the engine \\
torque by reducing the maximum engine torque potential as these \\
engine conditions vary from nominal:
\end{tabular} \\
& \begin{tabular}{l}
- \\
- Start of injection (SOI) timing \\
- Exhaust back-pressure
\end{tabular} \\
& \begin{tabular}{l}
- Burned fuel mass
\end{tabular} \\
& \begin{tabular}{l}
Intake manifold gas pressure, temperature, and oxygen \\
percentage
\end{tabular} \\
& \begin{tabular}{l}
To account for the effect of post-inject fuel on torque, the model \\
uses a calibrated torque offset table.
\end{tabular} \\
\hline "CI Engine Simple Torque & \begin{tabular}{l}
For the simple engine torque calculation, the CI engine uses a \\
torque lookup table map that is a function of engine speed and \\
injected fuel mass.
\end{tabular} \\
\hline
\end{tabular}

Air
Number of cylinders, NCyl - Engine cylinders
4 (default) | scalar
Number of engine cylinders, \(N_{\text {cyl }}\).

\section*{Air standard temperature, Pstd - Temperature}
293.15 (default) | scalar

Standard air temperature, \(T_{\text {std }}\), in K .

\section*{Crank revolutions per power stroke, Cps - Revolutions per stroke 2 (default) | scalar}

Crankshaft revolutions per power stroke, \(C p s\), in rev/stroke.
Total displaced volume, Vd - Volume
0.0015 (default) | scalar

Displaced volume, \(V_{d}\), in \(\mathrm{m}^{\wedge} 3\).
Ideal gas constant air, Rair - Constant
287.05 (default) | scalar

Ideal gas constant, \(R_{\text {air }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure 101325 (default) | scalar

Standard air pressure, \(P_{\text {std }}\), in Pa.

\section*{Speed-density volumetric efficiency, f_nv - Lookup table} array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed
\[
\eta_{v}=f_{\eta_{v}}(M A P, N)
\]
where:
- \(\eta_{v}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(N\) is engine speed, in rpm.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt - Breakpoints vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

\section*{Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints} vector

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

\section*{Torque}

\section*{Torque - Simple Torque Lookup}
```

Torque table, f_tq_nf - Lookup table
array

```

For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, \(T_{\text {brake }}=f_{T n f}(F, N)\), where:
- \(T q=T_{\text {brake }}\) is engine brake torque after accounting for engine mechanical and pumping friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt - Breakpoints
\(\left[\begin{array}{llllllllllllllllllll}0 & 3.5714 & 7.1429 & 10.7143 & 14.2857 & 17.8571 & 21.4286 & 25.5714 & 32.1429 & 35.7143\end{array}\right.\) 39.285742 .857146 .4286 50] (default)|vector

Torque table fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table speed breakpoints, f_tq_nf_n_bpt - Breakpoints
\([10001410.71431821 .42862232 .14 \overline{2} 9 \quad 264 \overline{2} .85713053 .57143464 .28573875\)
4285.71434696 .42865107 .14295517 .85715928 .57146339 .2857 6750] (default) |
vector
Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Torque - Torque Structure}

Fuel mass per injection breakpoints, f_tqs_f_bpt - Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Engine speed breakpoints, f_tqs_n_bpt - Breakpoints
[500 750 1000 1250 1500 175\overline{0}}200000~2250 2500 2750 3000 3250 3500 3750 4000]
(default)| vector

```

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal main start of injection timing, f_tqs_mainsoi - Optimal MAINSOI array}

The optimal main start of injection (SOI) timing lookup table, \(f_{\text {SOIc }}\), is a function of the engine speed and injected fuel mass, \(S O I_{c}=f_{\text {SOIC }}(F, N)\), where:
- \(S O I_{c}\) is optimal SOI timing, in degATDC.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake manifold gas pressure, f_tqs_map - Optimal intake MAP array}

The optimal intake manifold gas pressure lookup table, \(f_{\text {MAP }}\), is a function of the engine speed and injected fuel mass, \(M A P=f_{\text {MAP }}(F, N)\), where:
- MAP is optimal intake manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Optimal exhaust manifold gas pressure, f_tqs_emap - Optimal exhaust MAP array

The optimal exhaust manifold gas pressure lookup table, \(f_{\text {EMAP }}\), is a function of the engine speed and injected fuel mass, \(E M A P=f_{\text {EMAP }}(F, N)\), where:
- EMAP is optimal exhaust manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake manifold gas temperature, f_tqs_mat - Optimal intake MAT array}

The optimal intake manifold gas temperature lookup table, \(f_{\text {MAT }}\), is a function of the engine speed and injected fuel mass, \(M A T=f_{\text {MAT }}(F, N)\), where:
- MAT is optimal intake manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Optimal intake gas oxygen percent, f_tqs_o2pct - Optimal intake gas oxygen array

The optimal intake gas oxygen percent lookup table, \(f_{02}\), is a function of the engine speed and injected fuel mass, O2PCT \(=f_{02}(F, N)\), where:
- O2PCT is optimal intake gas oxygen, in percent.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal fuel rail pressure, f_tqs_fuelpress - Optimal fuel rail pressure array}

The optimal fuel rail pressure lookup table, \(f_{\text {fuelp }}\), is a function of the engine speed and injected fuel mass, \(F U E L P=f_{\text {fuelp }}(F, N)\), where:
- FUELP is optimal fuel rail pressure, in MPa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Optimal gross indicated mean effective pressure, f_tqs_imepg - Optimal mean effective pressure
array
The optimal gross indicated mean effective pressure lookup table, \(f_{\text {imepg }}\), is a function of the engine speed and injected fuel mass, \(I M E P G=f_{\text {imepg }}(F, N)\), where:
- IMEPG is optimal gross indicated mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal friction mean effective pressure, f_tqs_fmep - Optimal friction mean effective pressure}
array
The optimal friction mean effective pressure lookup table, \(f_{\text {fmep }}\), is a function of the engine speed and injected fuel mass, \(F M E P=f_{\text {fmep }}(F, N)\), where:
- \(F M E P\) is optimal friction mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal pumping mean effective pressure, f_tqs_pmep - Optimal pumping mean effective pressure}
array
The optimal pumping mean effective pressure lookup table, \(f_{\text {pmep }}\), is a function of the engine speed and injected fuel mass, \(P M E P=f_{\text {pmep }}(F, N)\), where:
- \(P M E P\) is optimal pumping mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Friction multiplier as a function of temperature, f_tqs_fric_temp_mod Friction multiplier
array
Friction multiplier as a function of temperature, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt - Breakpoints vector

Friction multiplier temperature breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff MAINSOI efficiency multiplier}
array
The main start of injection (SOI) timing efficiency multiplier lookup table, \(f_{\text {Soleff }}\) is a function of the engine speed and main SOI timing relative to optimal timing, \(S O I_{\text {eff }}=f_{\text {SOIeff }}(\Delta S O I, N)\), where:
- \(S O I_{e f f}\) is main SOI timing efficiency multiplier, dimensionless.
- \(\Delta\) SOI is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing relative to optimal timing breakpoints, f_tqs_mainsoi_delta_bpt - Breakpoints
vector
Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff - Intake pressure efficiency multiplier \\ array}

The intake manifold gas pressure efficiency multiplier lookup table, \(f_{\text {MAPeff, }}\) is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {eff }}=f_{\text {MAPeff }}\left(M A P_{\text {ratio }} \lambda\right)\), where:
- \(M A P_{\text {eff }}\) is intake manifold gas pressure efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, f_tqs_map_ratio_bpt - Breakpoints
[0.8;0.85;0.9;0.95;1;1.05;1.1;1.15;1.2;1.25;1.3;1.35;1.4;1.45;1.5] (default)| vector

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt - Breakpoints
[1.5 1.678571428571429 1.857142857142857 2.035714285714286 2.214285714285714
2.3928571428571432 .5714285714285712 .752 .9285714285714293 .107142857142857
3.2857142857142863 .4642857142857143 .6428571428571433 .821428571428572 4]
(default) | vector
Intake manifold gas lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff - Intake temperature efficiency multiplier
array
The intake manifold gas temperature efficiency multiplier lookup table, \(f_{\text {MATeff }}\), is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {eff }}=\) \(f_{\text {MATeff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {eff }}\) is intake manifold gas temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas temperature relative to optimal gas temperature breakpoints, f_tqs_mat_delta_bpt - Breakpoints
[\(-55 ;-50 ;-45 ;-\overline{4} 0 ;-\overline{35} ;-30 ;-25 ;-20 ;-15 ;-10 ;-5 ; 0 ; 5 ; 10 ; 15]\) (default)| vector

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K .

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff - Intake oxygen efficiency multiplier \\ array}

The intake manifold gas oxygen efficiency multiplier lookup table, \(f_{\text {O2Peff }}\), is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {eff }}=f_{\text {O2Peff }}(\triangle O 2 P, N)\), where:
- \(O 2 P_{\text {eff }}\) is intake manifold gas oxygen efficiency multiplier, dimensionless.
- \(\Delta O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Intake gas oxygen percent relative to optimal breakpoints,
f_tqs_o2pct_delta_bpt - Breakpoints
vector

```

Intake gas oxygen percent relative to optimal breakpoints, in percent.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff - Efficiency multiplier \\ array}

The fuel rail pressure efficiency multiplier lookup table, \(f_{\text {FUELPeff }}\), is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {eff }}=f_{\text {FUELPeff }}(\triangle F U E L P, N)\), where:
- FUELP \(P_{\text {eff }}\) is fuel rail pressure efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt - Breakpoints
vector
Fuel rail pressure relative to optimal breakpoints, in MPa.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel mass injection type identifier, f_tqs_f_inj_type - Type identifier 0 (default) | scalar

Fuel mass injection type identifier, dimensionless.
In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Pilot & 0 \\
\hline Main & 1 \\
\hline Post & 2 \\
\hline Passed & 3 \\
\hline
\end{tabular}

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr - Post inject correction
array

The indicated mean effective pressure post inject correction lookup table, \(f_{\text {IMEPpost }}\) is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(\Delta I M E P_{\text {post }}=\) \(f_{\text {IMEP post }}\left(\Delta S O I_{\text {post }}, F_{\text {post }}\right)\), where:
- \(\triangle I M E P_{\text {post }}\) is indicated mean effective pressure post inject correction, in Pa.
- \(\Delta S O I_{\text {post }}\) is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- \(F_{\text {post }}\) is indicated mean effective pressure post inject mass sum, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Indicated mean effective pressure post inject mass sum breakpoints,
f_tqs_f_post_sum_bpt - Breakpoints
[0 3.571428571428572 7.142857142857143 10.71428571428571 14.28571428571429
17.85714285714286 21.42857142857143 25 28.57142857142857 32.14285714285715
35.71428571428572 39.28571428571428 42.85714285714285 46.42857142857143 50]
(default)| vector

```

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject start of inject timing centroid breakpoints, f_tqs_soi_post_cent_bpt - Breakpoints
[150 160.7142857142857 171.4285714285714 182.1428571428571 192.8571428571429
203.5714285714286 214.2857142857143 225 235.7142857142857 246.4285714285714 257.1428571428571267 .8571428571429278 .5714285714286 289.2857142857143 300] (default) | vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit Maximum SOI angle for burned fuel \\ 500 (default) | scalar}

Maximum start of injection angle for burned fuel, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Exhaust}

Exhaust Temperature - Simple Torque Lookup
Exhaust temperature table, f_t_exh - Lookup table
array
The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed
\[
T_{e x h}=f_{T e x h}(F, N)
\]
where:
- \(T_{\text {exh }}\) is exhaust temperature, in K.
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Fuel mass per injection breakpoints, f_t_exh_f_bpt - Breakpoints
[0 3.57147 .142910 .714314 .285717 .8571 21.4286 2528.571432 .142935 .7143
39.285742 .857146 .4286 50] (default)|array

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
```

Speed breakpoints, f_t_exh_n_bpt - Breakpoints
[1000 1410.7143 1821.4286 2232.1429 2642.8571 3053.5714 3464.2857 3875
4285.7143 4696.4286 5107.1429 5517.8571 5928.5714 6339.2857 6750] (default)|
array

```

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Exhaust Temperature - Torque Structure}

Optimal exhaust manifold gas temperature, f_tqs_exht - Optimal exhaust manifold gas temperature
array
The optimal exhaust manifold gas temperature lookup table, \(f_{\text {Texh }}\), is a function of the engine speed engine speed and injected fuel mass, \(\operatorname{Texh}_{\text {opt }}=f_{\text {Texh }}(F, N)\), where:
- \(T_{e x h}^{\text {opt }}\) is optimal exhaust manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff - Main SOI timing efficiency multiplier array

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, \(f_{\text {SOIexhteff, }}\) is a function of the engine speed engine speed and injected fuel mass, \(S O I_{\text {exhteff }}=\) \(f_{\text {SOIexhteff }}(\Delta S O I, N)\), where:
- \(S O I_{\text {exhteff }}\) is main SOI exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle S O I\) is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas pressure exhaust temperature efficiency multiplier, f_tqs_exht_map_eff - Intake manifold efficiency multiplier
array
The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, \(f_{\text {MAPexheff; }}\) is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {exheff }}=f_{\text {MAPexheff }}\left(M A P_{\text {ratio }}, \lambda\right)\), where:
- \(M A P_{\text {exheff }}\) is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas temperature exhaust temperature efficiency multiplier, f_tqs_exht_mat_eff - Intake manifold efficiency multiplier array

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, \(f_{\text {MATexheff, }}\) is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {exheff }}=f_{\text {MATexheff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {exheff }}\) is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K .
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Intake manifold gas oxygen exhaust temperature efficiency multiplier, f_tqs_exht_o2pct_eff - Intake manifold efficiency multiplier array

```

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, \(f_{\text {O2Pexheff }}\), is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {exheff }}=\) \(f_{\text {O2Pexheff }}(\triangle O 2 P, N)\), where:
- \(O 2 P_{\text {exheff }}\) is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- \(\Delta O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure exhaust temperature efficiency multiplier, f_tqs_exht_fuelpress_eff - Fuel rail pressure exhaust temperature efficiency multiplier array

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, \(f_{\text {FUELPexheff, }}\) is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {exheff }}=\) \(f_{\text {FUELPexheff }}(\triangle F U E L P, N)\), where:
- FUELP \(P_{\text {exheff }}\) is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Post-injection cylinder wall heat loss transfer coefficient, f_tqs_exht_post_inj_wall_htc - Post-injection offset
0 (default) | scalar
Post-injection cylinder wall heat loss transfer coefficient, in W/K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Emissions}

\section*{\(\mathbf{C O 2}\) mass fraction table, f_CO2_frac - Carbon dioxide (\(\mathrm{CO}_{2}\)) emission lookup table array}

The CI Core Engine \(\mathrm{CO}_{2}\) emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:
- CO2 Mass Fraction is the \(\mathrm{CO}_{2}\) emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2.

\section*{CO mass fraction table, f_CO_frac - Carbon monoxide (CO) emission lookup table array}

The CI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:
- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO.

\section*{HC mass fraction table, f_HC_frac - Hydrocarbon (HC) emission lookup table array}

The CI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, \(H C\) Mass Fraction \(=f(\) Speed, Torque), where:
- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select HC.

\section*{NOx mass fraction table, f_NOx_frac - Nitric oxide and nitrogen dioxide (NOx) emission lookup table}
array
The CI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction \(=f(\) Speed, Torque), where:
- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select NOx.

\section*{PM mass fraction table, f_PM_frac - Particulate matter (PM) emission lookup table array}

The CI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:
- \(P M\) is the PM emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select PM.

\section*{Engine speed breakpoints, f_exhfrac_n_bpt - Breakpoints}
```

[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571
2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286
3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000]
(default)| vector

```

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
Engine torque breakpoints, f_exhfrac_trq_bpt - Breakpoints
[0 15 26.4285714285714 37.857142857142949 .285714285714360 .7142857142857
72.142857142857183 .571428571428695106 .428571428571117 .857142857143 \(129.285714285714140 .714285714286152 .142857142857163 .571428571429175]\) (default) | vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or \(\mathbf{P M}\).
Exhaust gas specific heat at constant pressure, cp_exh - Specific heat 1005 (default) | scalar

Exhaust gas-specific heat, \(C p_{\text {exh }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

Fuel
Stoichiometric air-fuel ratio, afr_stoich - Air-fuel ratio
14.6 (default) | scalar

Air-fuel ratio, \(A F R\).
Fuel lower heating value, fuel_lhv - Heating value 42e6 (default) | scalar

Fuel lower heating value, \(L H V\), in J/kg.
Fuel specific gravity, fuel_sg - Specific gravity
0.832 (default) | scalar

Specific gravity of fuel, \(S g_{f u e l}\), dimensionless.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

CI Controller | Mapped CI Engine

\section*{Topics}
"CI Core Engine Air Mass Flow and Torque Production"
"Engine Calibration Maps"

Introduced in R2017a

\section*{Compressor}

Compressor for boosted engines
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Boost

\section*{Description}

The Compressor block simulates engine boost by using the drive shaft energy to increase the intake manifold pressure. The block is a component of supercharger and turbocharger models. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. The control volumes provide the pressure, temperature, and specific enthalpy for the compressor to calculate the mass and energy flow rates. To calculate the torque and flow rates, the drive shaft provides the speed to the compressor. Typically, compressor manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. You can specify the lookup tables to calculate the mass flow rate and efficiency. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to the outlet control volume.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Task & \multicolumn{5}{|l|}{Description} \\
\hline \multirow[t]{6}{*}{Import compressor data} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox). \\
- Speed, Spd, in rad/s \\
- Mass flow rate, MassFlwRate, in kg/s \\
- Pressure ratio, PrsRatio, dimensionless \\
- Efficiency, Eff, dimensionless \\
The speed, mass flow rate, pressure ratio, and efficiency are in the 2nd-5th columns of the data file, respectively. The first and second rows of the data file provide the variable names and units. For example, use this format.
\end{tabular}} \\
\hline & Name: & Spd & MassFlwRate & PrsRatio & Eff \\
\hline & Unit: & rad/s & kg/s & & \\
\hline & Data: & 8373.3 & 0.02 & 1.21 & 0.44 \\
\hline & & ... & ... & ... & ... \\
\hline & \multicolumn{5}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline \multirow[t]{5}{*}{Generate response models} & \multicolumn{5}{|l|}{Model-Based Calibration Toolbox fits the imported data to the response models.} \\
\hline & \multicolumn{5}{|l|}{\begin{tabular}{|l|l}
\hline Data & Response Model
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{Mass flow rate} & \multicolumn{3}{|l|}{Extended ellipse response model described in Modeling and Control of Engines and Drivelines \({ }^{2}\)} \\
\hline & \multicolumn{5}{|l|}{\begin{tabular}{|l|l}
Efficiency & Polynomial
\end{tabular}} \\
\hline & \multicolumn{5}{|l|}{To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).} \\
\hline Generate calibration & \multicolumn{5}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Task & Description \\
\hline Update block parameters & \begin{tabular}{l}
Update these mass flow rate and efficiency parameters with the calibration. \\
- Corrected mass flow rate table, mdot_corr_tbl \\
- Efficiency table, eta_comp_tbl \\
- Corrected speed breakpoints, w_corr_bpts1 \\
- Pressure ratio breakpoints, Pr_bpts2
\end{tabular} \\
\hline
\end{tabular}

\section*{Thermodynamics}

The block uses these equations to model the thermodynamics.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Forward mass flow & \(\dot{m}_{\text {comp }}>0\) \\
& \(p_{01}=p_{\text {inlet }}=p_{\text {outlet }}\) \\
& \(T_{01}=T_{\text {inlet }}\) \\
& \(h_{01}=h_{\text {inlet }}\) \\
\hline First law of thermodynamics & \(\dot{W}_{\text {comp }}=\dot{m}_{\text {comp }} c_{p}\left(T_{01}-T_{02}\right)\) \\
\hline Isentropic efficiency & \(\eta_{\text {comp }}=\frac{h_{02 s}-h_{01}}{h_{02}-h_{01}}=\frac{T_{02 s}-T_{01}}{T_{02}-T_{01}}\) \\
\hline \begin{tabular}{l}
Isentropic outlet temperature, \\
assuming ideal gas and constant \\
specific heats
\end{tabular} & \(T_{02 s}=T_{01}\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}\) \\
\hline Specific heat ratio & \(\gamma=\frac{c_{p}}{c_{p}-R}\) \\
\hline Outlet temperature & \(\left.T_{02}=T_{01}+\frac{T_{01}}{\eta_{c o m b}}\left\{\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}-1\right\}\) \\
\hline Heat flows & \(q_{\text {inlet }}=\dot{m}_{\text {comp }} h_{01}\) \\
\hline Corrected mass flow rate & \(q_{\text {outlet }}=\dot{m}_{\text {comp }} h_{02}=\dot{m}_{\text {comp }} c_{p} T_{02}\) \\
\hline Corrected speed & \(\dot{m}_{\text {corr }}=\dot{m}_{\text {comp }} \frac{\sqrt{T_{01} / T_{r e f}}}{p_{01} / p_{r e f}}\) \\
\hline Pressure ratio & \(\omega_{\text {corr }}=\frac{\omega}{\sqrt{T_{01} / T_{r e f}}}\) \\
\hline & \(p_{r}=\frac{p_{01}}{p_{02}}\) \\
\hline
\end{tabular}

The block uses the internal signal FlwDir to track the direction of the flow.
The equations use these variables.
\begin{tabular}{ll}
\(p_{\text {inlet }}, p_{01}\) & Inlet control volume total pressure \\
\(T_{\text {inlet }}, T_{01}\) & Inlet control volume total temperature \\
\(h_{\text {inlet }}, h_{01}\) & Inlet control volume total specific enthalpy \\
\(p_{\text {outlet }}, p_{02}\) & Outlet control volume total pressure \\
\(T_{\text {outlet }}\) & Outlet control volume total temperature \\
\(h_{\text {outlet }}\) & Outlet control volume total specific enthalpy \\
\(\dot{W}_{\text {comp }}\) & Drive shaft power \\
\(T_{02}\) & Outlet total temperature \\
\(h_{02}\) & Outlet total specific enthalpy \\
\(\dot{m}_{\text {comp }}\) & Mass flow rate through compressor \\
\(q_{\text {inlet }}\) & Inlet heat flow rate \\
\(q_{\text {outlet }}\) & Outlet heat flow rate \\
\(\eta_{\text {comp }}\) & Compressor isentropic efficiency \\
\(T_{02 s}\) & Isentropic outlet total temperature \\
\(h_{02 s}\) & Isentropic outlet total specific enthalpy \\
\(R\) & Ideal gas constant \\
\(c_{p}\) & Specific heat at constant pressure \\
\(\gamma\) & Specific heat ratio \\
\(\dot{m}_{\text {corr }}\) & Corrected mass flow rate \\
\(\omega\) & Drive shaft speed \\
\(\omega_{\text {corr }}\) & Corrected drive shaft speed \\
\(T_{\text {ref }}\) & Lookup table reference temperature \\
\(P_{\text {ref }}\) & Lookup table reference pressure \\
\(\tau_{\text {comp }}\) & Compressor drive shaft torque \\
\(p_{r}\) & Pressure ratio \\
\(\eta_{\text {comb }, t b l}\) & Compressor efficiency 3-D lookup table \\
\(\dot{m}_{\text {corr }, t b l}\) & Corrected mass flow rate 3-D lookup table \\
\(\omega_{\text {corr, bpts1 }}\) & Corrected speed breakpoints \\
\(p_{r, b p t s 2}\) & Pressure ratio breakpoints \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{5}{*}{PwrInf 0} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrDriveshf t & Power transmitted from the shaft & \(-\dot{W}_{\text {turb }}\) \\
\hline & & PwrHeatFlwI n & Heat flow rate at port A & \(q_{\text {outlet }}\) \\
\hline & & PwrHeatFlw0 ut & Heat flow rate at port B & \(q_{\text {outlet }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Power loss & \[
\begin{aligned}
& -q_{\text {inlet }}-q_{\text {outlet }} \\
& +\dot{W}_{\text {turb }}
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

The equations use these variables.
\(\dot{W}_{\text {turb }} \quad\) Drive shaft power
\(q_{\text {outlet }} \quad\) Total outlet heat flow rate
\(q_{\text {inlet }} \quad\) Total inlet heat flow rate

\section*{Ports}

\section*{Input}

\section*{Ds - Drive shaft speed}
two-way connector port
ShftSpd - Signal containing the drive shaft angular speed, \(\omega\), in rad/s.
A - Inlet pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing the inlet control volume:
- InPrs - Pressure, \(p_{\text {inlet }}\), in Pa
- InTemp - Temperature, \(T_{\text {inlet }}\), in K
- InEnth - Specific enthalpy, \(h_{\text {inlet }}\), in J/kg

Bus containing the outlet control volume:
- OutPrs - Pressure, \(p_{\text {outlet }}\), in Pa
- OutTemp - Temperature, \(T_{\text {outlet }}\), in K
- OutEnth - Specific enthalpy, \(h_{\text {outlet }}\), in J/kg

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline CmprsOutletTemp & Temperature exiting the compressor & K \\
\hline DriveshftPwr & Drive shaft power & W \\
\hline DriveshftTrq & Drive shaft torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline CmprsMassFlw & Mass flow rate through compressor & \(\mathrm{kg} / \mathrm{s}\) \\
\hline PrsRatio & Pressure ratio & \(\mathrm{N} / \mathrm{A}\) \\
\hline DriveshftCorrSpd & Corrected drive shaft speed & \(\mathrm{rad} / \mathrm{s}\) \\
\hline CmprsEff & Compressor isentropic efficiency & \(\mathrm{N} / \mathrm{A}\) \\
\hline CorrMassFlw & Corrected mass flow rate & \(\mathrm{kg} / \mathrm{s}\) \\
\hline \multirow{4}{*}{ PwrInfo } & \begin{tabular}{l}
PwrTrns \\
frd
\end{tabular} & PwrDriveshft \\
\cline { 2 - 4 } & PwrHeatFlwIn & Power transmitted from the shaft \\
\cline { 2 - 4 } & PwrHeatFlw0ut & Heat flow rate at port A \\
\hline & \begin{tabular}{l}
PwrNotT \\
rnsfrd
\end{tabular} & PwrLoss \\
\cline { 2 - 3 } & PwrStored & W \\
\hline
\end{tabular}

\section*{Ds - Drive shaft torque}
two-way connector port
Trq - Signal containing the drive shaft torque, \(\tau_{\text {comp }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{A - Inlet mass flow rate, heat flow rate, temperature, mass fractions}
two-way connector port
Bus containing:
- MassFlwRate - Mass flow rate through inlet, \(\dot{m}_{\text {comp }}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Inlet heat flow rate, \(q_{\text {inlet }}\), in J/s
- Temp - Inlet temperature, in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet mass flow rate, heat flow rate, temperature, mass fractions two-way connector port

Bus containing:
- MassFlwRate - Outlet mass flow rate, \(\dot{m}_{\text {comp }}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Outlet heat flow rate, \(q_{\text {outlet }}\), in J/s
- Temp - Outlet temperature, in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Performance Tables}

Calibrate Performance Maps - Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Task & \multicolumn{5}{|l|}{Description} \\
\hline \multirow[t]{6}{*}{Import compressor data} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox). \\
- Speed, Spd, in rad/s \\
- Mass flow rate, MassFlwRate, in kg/s \\
- Pressure ratio, PrsRatio, dimensionless \\
- Efficiency, Eff, dimensionless \\
The speed, mass flow rate, pressure ratio, and efficiency are in the 2nd-5th columns of the data file, respectively. The first and second rows of the data file provide the variable names and units. For example, use this format.
\end{tabular}} \\
\hline & Name: & Spd & MassFlwRate & PrsRatio & Eff \\
\hline & Unit: & rad/s & kg/s & & \\
\hline & Data: & 8373.3 & 0.02 & 1.21 & 0.44 \\
\hline & & \(\ldots\) & .. & ... & ... \\
\hline & \multicolumn{5}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline \multirow[t]{5}{*}{Generate response models} & \multicolumn{5}{|l|}{Model-Based Calibration Toolbox fits the imported data to the response models.} \\
\hline & \multicolumn{5}{|l|}{Data \(\quad\) Response Model} \\
\hline & \multicolumn{2}{|l|}{Mass flow rate} & \multicolumn{3}{|l|}{Extended ellipse response model described in Modeling and Control of Engines and Drivelines \({ }^{2}\)} \\
\hline & \multicolumn{2}{|l|}{Efficiency} & \multicolumn{3}{|c|}{Polynomial} \\
\hline & \multicolumn{5}{|l|}{To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).} \\
\hline Generate calibration & \multicolumn{5}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline Update block & Update these mass flow rate and efficiency parameters with the calibration. \\
parameters & - \(\quad\) Corrected mass flow rate table, mdot_corr_tbl \\
& - \begin{tabular}{l}
Efficiency table, eta_comp_tbl \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{tabular} Corrected speed breakpoints, w_corr_bpts1 Pressure ratio breakpoints, Pr_bpts2 \\
\hline
\end{tabular}

Corrected mass flow rate table, mdot_corr_tbl - Lookup table array

Corrected mass flow rate lookup table, \(\dot{m}_{\text {corr, tbl }}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\) and pressure ratio, \(p_{r}\), in kg/s.

Efficiency table, eta_comp_tbl - Lookup table
array
Efficiency lookup table, \(\eta_{c o m b, t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\), and pressure ratio, \(p_{r}\), dimensionless.

\section*{Corrected speed breakpoints, w_corr_bpts1 - Breakpoints \\ vector}

Corrected drive shaft speed breakpoints, \(\omega_{\text {corr, bpts1 }}\), in rad/s.

\section*{Pressure ratio breakpoints, Pr_bpts2 - Breakpoints vector}

Pressure ratio breakpoints, \(p_{r, b p t s 2}\).

\section*{Reference temperature, T_ref - Reference}
293.15 (default) | scalar

Lookup table reference temperature, \(T_{\text {ref }}\), in K.
Reference pressure, P_ref - Reference 101325 (default) | scalar

Lookup table reference pressure, \(P_{r e f}\), in Pa.

\section*{Gas Properties}

Ideal gas constant, R-Constant 287 (default) | scalar

Ideal gas constant, \(R\), in \(\mathrm{J} /\left(\mathrm{kg}^{*} \mathrm{~K}\right)\).

\section*{Specific heat at constant pressure, cp - Specific heat 1005 (default) | scalar}

Specific heat at constant pressure, \(c_{p}\), in \(\mathrm{J} /\left(\mathrm{kg}^{*} \mathrm{~K}\right)\).

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[2] Eriksson, Lars and Lars Nielsen. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Boost Drive Shaft | Turbine
Topics
"Model-Based Calibration Toolbox"

Introduced in R2017a

\section*{Control Volume System}

Constant volume open thermodynamic system with heat transfer

\section*{Library: \\ Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow}

\section*{Description}

The Control Volume System block models a constant volume open thermodynamic system with heat transfer. The block uses the conservation of mass and energy, assuming an ideal gas, to determine the pressure and temperature. The block implements an automotive-specific Constant Volume Pneumatic Chamber block that includes thermal effects related to the under hood of passenger vehicles. You can specify heat transfer models:
- Constant
- External input
- External wall convection

You can use the Control Volume System block to represent engine components that contain volume, including pipes and manifolds.

\section*{Thermodynamics}

The Control Volume System block implements a constant volume chamber containing an ideal gas. To determine the rate changes in temperature and pressure, the block uses the continuity equation and the first law of thermodynamics.
\[
\begin{aligned}
& \frac{d T_{v o l}}{d t}=\frac{R T_{v o l}}{c_{v} V_{c h} P_{v o l}}\left(\sum\left(q_{i}-T_{v o l} c_{v} \dot{m}_{i}\right)-Q_{w a l l}\right) \\
& \frac{d P_{v o l}}{d t}=\frac{P_{v_{\text {vol }}}}{T_{v o l}} \frac{d T_{v o l}}{d t}+\frac{R T_{v o l}}{V_{c h}} \sum \dot{m}_{i}
\end{aligned}
\]

The block uses this equation for the volume-specific enthalpy.
\[
h_{\text {vol }}=c_{p} T_{\text {vol }}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\dot{m}_{i}\) & Mass flow rate at port \\
\(q_{i}\) & Heat flow rate at port \\
\(V_{c h}\) & Chamber volume \\
\(P_{\text {vol }}\) & Absolute pressure in the chamber \\
\(R\) & Ideal gas constant \\
\(c_{v}\) & Specific heat at constant volume
\end{tabular}
\begin{tabular}{ll}
\(T_{\text {vol }}\) & Absolute gas temperature \\
\(Q_{\text {wall }}\) & Wall heat transfer rate \\
\(h_{\text {vol }}\) & Volume-specific enthalpy \\
\(c_{p}\) & Specific heat capacity
\end{tabular}

\section*{Mass Fractions}

The Control Volume Source block is part of a flow network. Blocks in the network determine the mass fractions that the block will track during simulation. The block can track these mass fractions:
- 02 - Oxygen
- N2 - Nitrogen
- UnburnedFuel - Unburned fuel
- CO2 - Carbon dioxide
- H2O - Water
- CO - Carbon monoxide
- NO - Nitric oxide
- NO2 - Nitrogen dioxide
- PM - Particulate matter
- Air - Air
- BurnedGas - Burned gas

Using the conservation of mass for each gas constituent, this equation determines the rate change:
\[
\frac{d y_{v o l}, j}{d t}=\frac{R T_{v o l}}{P_{v o l} V_{c h}}\left(\sum \dot{m}_{i} y_{i, j}+y_{v o l}, j \dot{m}_{i}\right)
\]

The equations use these variables.
\(V_{c h} \quad\) Chamber volume
\(P_{\text {vol }} \quad\) Absolute pressure in the chamber
\(R \quad\) Ideal gas constant
\(T_{\text {vol }} \quad\) Absolute gas temperature
\(y_{i, j} \quad\) I-th port mass fraction for \(\mathrm{j}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{PM}\), air, and burned gas
\(y_{\text {vol }, \mathrm{j}} \quad\) Control volume mass fraction for \(\mathrm{j}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{PM}\), air, and burned gas
\(\dot{m}_{i} \quad\) Mass flow rate for \(\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{PM}\), air, and burned gas

\section*{External Wall Convection Heat Transfer Model}

To calculate the heat transfer, you can configure the Control Volume Source block to calculate the heat transfer across the wall of the control volume.

The block implements these equations to calculate the heat transfer, \(Q_{1}\), from the internal control volume gas to the internal wall depth, \(D_{\text {int_cond }}\).
\[
\begin{aligned}
& Q_{1}=Q_{1, \text { conv }}=Q_{1, \text { cond }} \\
& Q_{1, \text { conv }}=h_{\text {int }}\left(x_{\text {int }}\right) \cdot A_{\text {int_conv }} \cdot\left(T_{\text {int_gas }}-T_{w_{-} \text {int }}\right) \\
& Q_{1, \text { cond }}=k_{\text {int }} \cdot \frac{A_{\text {int_cond }}}{D_{\text {int_cond }}} \cdot\left(T_{w_{-} \text {int }}-T_{\text {mass }}\right)
\end{aligned}
\]

The block implements these equations to calculate the heat transfer, \(Q_{2}\), from the external wall depth, \(D_{\text {ext_cond }}\) to the external gas.
\[
\begin{aligned}
& Q_{2}=Q_{2, \text { conv }}=h_{\text {ext }}\left(x_{\text {ext }}\right) \cdot A_{\text {ext_conv }} \cdot\left(T_{w_{-} e x t}-T_{\text {ext_gas }}\right) \\
& Q_{2, \text { cond }}=k_{\text {ext }} \cdot \frac{A_{\text {ext_cond }}}{D_{\text {ext_cond }}} \cdot\left(T_{\text {mass }}-T_{w_{-} \text {ext }}\right)
\end{aligned}
\]

This equation expresses the heat stored in the thermal mass.
\[
\frac{d T_{\text {mass }}}{d t}=\frac{Q_{1}-Q_{2}}{c_{p_{\text {wall }}}{ }^{m_{\text {wall }}}}
\]

The block determines the interior convection heat transfer coefficient using a lookup table that is a function of the average mass flow rate.
\[
\dot{m}_{\text {int_gas }}=\frac{1}{2} \sum\left|\dot{m}_{i}\right|
\]

The equations use these variables.
\begin{tabular}{ll}
\(Q_{1}\) & Heat flow from the internal gas to a specified wall depth \\
\(Q_{1, \text { conv }}\) & Heat flow convection from the internal gas to the internal wall \\
\(Q_{1, \text { cond }}\) & Conduction heat transfer rate \\
\(Q_{2}\) & Heat transfer rate \\
\(Q_{2, \text { conv }}\) & Convection heat transfer \\
\(Q_{2, \text { cond }}\) & \begin{tabular}{l}
Heat flow conduction from the external middle portion of the wall to the external \\
wall \\
\(Q_{\text {mass }}\)
\end{tabular} \\
\(h_{\text {int }}\) & Heat stored in thermal mass \\
\(X_{\text {int }}\) & Internal convection heat transfer coefficient \\
& Internal mass flow rate breakpoints
\end{tabular}
\begin{tabular}{ll}
\(A_{\text {int_conv }}\) & Internal flow convection area \\
\(T_{\text {int_gas }}\) & Temperature of the gas inside the chamber \\
\(T_{\text {_int }}\) & Temperature of the inside wall of the chamber \\
\(k_{\text {int }}\) & Internal wall thermal conductivity \\
\(A_{\text {int_cond }}\) & Internal conduction area \\
\(D_{\text {int_cond }}\) & Internal wall thickness \\
\(h_{\text {ext }}\) & External convection heat transfer coefficient \\
\(x_{\text {ext }}\) & External velocity breakpoints \\
\(A_{\text {ext_conv }}\) & External convection area \\
\(T_{\text {ext_gas }}\) & External gas temperature \\
\(T_{\text {w_ext }}\) & Temperature of the external wall of the chamber \\
\(k_{\text {ext }}\) & External wall thermal conductivity \\
\(A_{\text {ext_cond }}\) & External conduction area \\
\(D_{\text {ext_cond }}\) & External wall thickness \\
\(T_{\text {mass }}\) & Temperature of the thermal mass \\
\(c_{p_{\text {_wall }}}\) & Wall heat capacity \\
\(m_{\text {wall }}\) & Thermal mass \\
\(F l w_{\text {spd }}\) & External flow velocity \\
\(\dot{m}_{\text {int_gas }}\) & Average internal mass flow rate
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equation based on the number of inlet and outlet ports.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{2}{*}{PwrIn fo} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrHeatFl wi & Port \(i\) heat flow & \(q_{i}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrHeatTr nsfr & Heat transfer rate from wall to control volume & - \(Q_{\text {wall }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Bus Signal & & Description & Equations \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrHeatSt ored & Rate of heat stored in the control volume & \[
\left(\sum\left(q_{i}\right)-Q_{\text {wall }}\right)
\] \\
\hline
\end{tabular}

For example, if you configure your block with 3 input ports and 2 outlet ports, the block implements these equations
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{7}{*}{PwrIn
fo} & \multirow[t]{5}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrHeatFl w1 & Inlet port 1 heat flow & \(q_{1}\) \\
\hline & & ```
PwrHeatFl
w2
``` & Inlet port 2 heat flow & \(q_{2}\) \\
\hline & & \begin{tabular}{l}
PwrHeatFl \\
w3
\end{tabular} & Inlet port 3 heat flow & \(q_{3}\) \\
\hline & & PwrHeatFl w4 & Outlet port 4 heat flow & \(q_{4}\) \\
\hline & & PwrHeatFl w5 & Outlet port 5 heat flow & \(q_{5}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrHeatTr nsfr & Heat transfer rate from wall to control volume & - \(Q_{\text {wall }}\) \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrHeatSt ored & Rate of heat stored in the control volume & \[
\left(\sum\left(q_{i}\right)-Q_{\text {wall }}\right)
\] \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{C - Inlet mass flow rate, heat flow rate, mass fractions}
two-way connector port
Bus containing:
- MassFlw - Mass flow rate through inlet, in kg/s
- HeatFlw - Inlet heat flow rate, in J/s
- MassFrac - Inlet mass fractions, dimensionless. Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Dependencies}

To create input ports, specify the Number of inlet ports parameter.

\section*{HeatTrnsfrRate - Heat transfer}
scalar
External heat transfer input to control volume, \(q_{h e}\), in \(\mathrm{Kg} / \mathrm{s}\).

\section*{Dependencies}

To create this port, select External input for the Heat transfer model parameter.

\section*{ExtnlFlwVel - External flow velocity}
scalar
External flow velocity, \(F l w_{\text {spd }}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Dependencies}

To create this port, select External wall convection for the Heat transfer model parameter.

\section*{ExtnlTemp - Ambient temperature, K}
scalar

\section*{Dependencies}

To create this port, select External wall convection for the Heat transfer model parameter.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{15}{*}{Vol} & \multicolumn{2}{|l|}{Prs} & Volume pressure & Pa \\
\hline & \multicolumn{2}{|l|}{Temp} & Volume temperature & K \\
\hline & \multicolumn{2}{|l|}{Enth} & Volume specific enthalpy & J/kg \\
\hline & \multirow[t]{12}{*}{Species} & 02MassFrac & Oxygen mass fraction & NA \\
\hline & & N2MassFrac & Nitrogen mass fraction & NA \\
\hline & & UnbrndFuelMassFrac & Unburned gas mass fraction & NA \\
\hline & & C02MassFrac & Carbon dioxide mass fraction & NA \\
\hline & & H2OMassFrac & Water mass fraction & NA \\
\hline & & COMassFrac & Carbon monoxide mass fraction & NA \\
\hline & & NOMassFrac & Nitric oxide mass fraction & NA \\
\hline & & N02MassFrac & Nitrogen dioxide mass fraction & NA \\
\hline & & NOxMassFrac & Nitric oxide and nitrogen dioxide mass fraction & NA \\
\hline & & PmMassFrac & Particulate matter mass fraction & NA \\
\hline & & AirMassFrac & Air mass fraction & NA \\
\hline & & BrndGasMassFrac & Burned gas mass fraction & NA \\
\hline \multirow[t]{3}{*}{HeatTrnsfr} & \multicolumn{2}{|l|}{HeatTrnsfrRate} & Wall heat transfer rate & J/s \\
\hline & \multicolumn{2}{|l|}{MassFlw} & Average internal mass flow rate & kg/s \\
\hline & \multicolumn{2}{|l|}{IntrnTemp} & Temperature of gas inside chamber & K \\
\hline \multirow[t]{3}{*}{PwrInfo} & PwrTrnsfrd & PwrHeatFlwi & Port \(i\) heat flow & W \\
\hline & PwrNotTrnsfrd & PwrHeatTrnsfr & Heat transfer rate from wall to control volume & W \\
\hline & PwrStored & PwrHeatStored & Rate of heat stored in the control volume & W \\
\hline
\end{tabular}

\section*{C - Outlet pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the outlet control volume:
- Prs - Chamber pressure, in Pa
- Temp - Gas temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Mass fractions, dimensionless. Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Dependencies}

To create outlet ports, specify the Number of outlet ports parameter.

\section*{Parameters}

\section*{Block Options}

Number of inlet ports - Number of ports
1 (default) | 0 | 2 | 3 | 4
Number of inlet ports.

\section*{Dependencies}

To create inlet ports, specify the number.
Number of outlet ports - Number of ports
1 (default) | 0 | 2 | 3 | 4
Number of outlet ports.

\section*{Dependencies}

To create outlet ports, specify the number.

\section*{Heat transfer model - Select model}

Constant (default)|External input|External wall convection

\section*{Dependencies}

Selecting Constant or External wall convection enables the Heat Transfer parameters.

\section*{Image type - Icon color}

Cold (default) | Hot
Select color for block icon:
- Cold for blue
- Hot for red

General
Chamber volume, Vch - Volume
0.0029 (default) | scalar

Chamber volume, \(V_{\text {ch }}\), in m^3.
Initial chamber pressure, Pinit - Pressure
101325 (default) | scalar
Initial chamber pressure, \(P_{\text {vol }}\), in Pa .
Initial chamber temperature, Tinit - Temperature
298 (default) | scalar
Initial chamber temperature, \(T_{\text {vol }}\), in K .
Ideal gas constant, R-Ideal gas constant 287 (default) | scalar

Ideal gas constant, \(R\), in \(\mathrm{J} /(\mathrm{kg} * \mathrm{~K})\).
Specific heat capacity, cp - Specific heat
1005 (default) | scalar
Specific heat capacity, \(c_{p}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Heat Transfer
Heat transfer rate, q_he - Rate
0 (default) | scalar
Constant heat transfer rate, \(q_{h e}\) in J/s.

\section*{Dependencies}

To enable this parameter, select Constant for the Heat transfer model parameter.
External convection heat transfer coefficient, ext_tbl - Manifold external air [40 160740 2000] (default)|vector

External convection heat transfer coefficient, \(h_{\text {ext }}\), in \(\mathrm{W} /\left(\mathrm{m}^{\wedge} 2 \mathrm{~K}\right)\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External velocity breakpoints, ext_bpts - Manifold external air linspace(0,180,4) (default)|vector

External velocity breakpoints, \(x_{e x t}\), in \(\mathrm{m} / \mathrm{s}\).
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

External convection area, Aext_conv - Manifold external air 0.125 (default) | scalar

External convection area, \(A_{\text {ext_conv, }}\) in \(\mathrm{m}^{\wedge} 2\).
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Thermal mass, m_wall - Manifold wall general
7 (default) | scalar
Thermal mass, \(m_{\text {wall }}\), in kg .
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Wall heat capacity, cp_wall - Manifold wall general
900 (default) | scalar
Wall heat capacity, \(c_{p_{-} \text {wall, }}\) in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Initial mass temperature, Tmass - Manifold wall general
293.15 (default) | scalar

Initial mass temperature, \(T_{\text {mass }}\) in K .

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External wall thickness, Dext_cond - Manifold wall external
0.004 (default) | scalar

External wall thickness, \(D_{\text {ext_cond, }}\) in m.

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{External conduction area, Aext_cond - Manifold wall external 0.003 (default) | scalar}

External conduction area, \(A_{\text {ext_cond, }}\), in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External wall thermal conductivity, kint - Manifold wall external 25 (default) | scalar

External wall thermal conductivity, \(k_{\text {ext }}\) in \(\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})\).
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal wall thickness, Dint_cond - Manifold wall internal 0.004 (default) | scalar

Internal wall thickness, \(D_{\text {int_cond }}\), in m.
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal conduction area, Aint_cond - Manifold wall internal 0.003 (default) | scalar

Internal conduction area, \(A_{\text {int_cond, }}\) in \(\mathrm{m}^{\wedge} 2\).
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal wall thermal conductivity, kint - Manifold wall internal 25 (default) | scalar

Internal wall thermal conductivity, \(k_{\text {int }}\) in \(\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal convection heat transfer coefficient, int_tbl - Manifold internal air [40 160740 2000] (default)|vector

Internal convection heat transfer coefficient, \(h_{\text {int }}\) in \(\mathrm{W} /\left(\mathrm{m}^{\wedge} 2 \mathrm{~K}\right)\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal mass flow rate breakpoints, int_bpts - Manifold internal air linspace(0.0020,0.1100,4) (default)|vector

Internal velocity breakpoints, \(x_{\text {int }}\), in \(\mathrm{kg} / \mathrm{s}\).
Dependencies
To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal flow convection area, Aint_conv - Manifold internal air 0.125 (default) | scalar

Internal convection area, \(A_{\text {int_conv, }}\) in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Flow Restriction | Heat Exchanger | Constant Volume Pneumatic Chamber (Simscape)
Introduced in R2017a

\section*{Flow Boundary}

Flow boundary for ambient temperature and pressure


Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow


\section*{Description}

The Flow Boundary block implements a flow boundary that typically represents ambient temperature and pressure. Engine models require flow boundaries at the intake inlet and exhaust outlet. In dynamic engine models, flow-modifying components (for example, flow restriction, turbines, and compressors) connect to control volumes and flow boundaries.

You can specify these block configurations:
- Constant pressure and temperature
- Externally input pressure and temperature

The Flow Boundary block outputs pressure, temperature, and specific enthalpy:
\[
h=c_{p} T
\]

The block models the mass fractions as dry air, resulting in these mass fractions:
- \(y_{N 2}=0.767\)
- \(y_{02}=.233\)

The equation uses these variables.
\begin{tabular}{ll}
\(T\) & Temperature \\
\(h\) & Specific enthalpy \\
\(c_{p}\) & Specific heat at constant pressure \\
\(y_{N 2}\) & Nitrogen mass fraction \\
\(y_{O 2}\) & Oxygen mass fraction
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{3}{*}{PwrIn fo} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrBndrFl w & Heat flow rate to flow restriction & \(q_{\text {orf }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrEnv & Heat flow rate to environment & - \(q_{\text {orf }}\) \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

Prs - Pressure
scalar
External input pressure, \(P\), in Pa.

\section*{Dependencies}

To create this port, select External input for the Pressure and temperature source parameter.

\section*{Temp - Temperature scalar}

External input temperature, \(T\), in K .

\section*{Dependencies}

To create this port, select External input for the Pressure and temperature source parameter.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline BndryPrs & Boundary pressure & Pa \\
\hline BndryTemp & Boundary temperature & K \\
\hline BndryEnth & PwrBndryFlw & Boundary specific enthalpy & \(\mathrm{J} / \mathrm{kg}\) \\
\hline \multirow{3}{*}{ PwrInfo } & PwrTrnsfrd & \begin{tabular}{l} 
Heat flow rate to flow \\
restriction
\end{tabular} & W \\
\cline { 2 - 4 } & & PwrNotTrnsfrd & PwrEnv \\
\cline { 2 - 5 } & PwrStored & Heat flow rate to environment & W \\
\hline
\end{tabular}

\section*{C - Boundary pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the flow boundary:
- Prs - Pressure, \(P\), in Pa
- Temp - Temperature, \(T\), in K
- Enth - Specific enthalpy, h, in J/kg
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Pressure and temperature source - Select source \\ External input (default)|Constant}

Pressure and temperature source.

\section*{Dependencies}

The table summarizes the parameter and port dependencies.
\begin{tabular}{|l|l|l|}
\hline Value & Enables Parameters & Creates Ports \\
\hline Constant & Pressure, Pcnst \\
Temperature, Tcnst
\end{tabular}\(\quad\) None \begin{tabular}{l} 
External input \\
\hline
\end{tabular}

\section*{Image type - Icon color \\ Cold (default) | Hot}

Select color for block icon:
- Cold for blue
- Hot for red

Pressure, Pcnst - Constant
101325 (default) | scalar
Constant pressure, \(P\), in Pa .

\section*{Dependencies}

To enable this parameter, select Constant for the Pressure and temperature source parameter.

\section*{Temperature, Tcnst - Constant}
298.15 (default)| scalar

Constant temperature, \(T\), in K .

\section*{Dependencies}

To enable this parameter, select Constant for the Pressure and temperature source parameter.

\section*{Specific heat at constant pressure, cp - Constant 1005 (default) | scalar}

Specific heat at constant pressure, in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).

\section*{See Also}

Compressor | Flow Restriction | Turbine

Introduced in R2017a

\section*{Flow Restriction}

Isentropic ideal gas flow through an orifice
Library: \begin{tabular}{ll} 
Powertrain Blockset / Propulsion / Combustion Engine \\
& Components / Fundamental Flow
\end{tabular}


\section*{Description}

The Flow Restriction block models isentropic ideal gas flow through an orifice. The block uses the conservation of mass and energy to determine the mass flow rate. The flow velocity is limited by choked flow.

You can specify these orifice area models:
- Constant
- External input
- Throttle body geometry

\section*{Equations}

The Flow Restriction block implements these equations.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Standard orifice & \[
\begin{aligned}
& \dot{m}_{\text {orf }}=\Gamma \cdot \Psi\left(P_{\text {ratio }}\right) \\
& P_{\text {ratio }}=\frac{P_{\text {downstr }}}{P_{\text {upstr }}} \\
& \Gamma=\frac{A_{\text {eff }} \cdot P_{\text {upstr }}}{\sqrt{R \cdot T_{\text {upstr }}}} \\
& P_{\text {cr }}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} \\
& \Psi=\left\{\begin{array}{c}
\sqrt{\gamma\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}} \begin{array}{l}
\sqrt{\frac{2 \gamma}{\gamma-1}\left(P_{\text {ratio }} \frac{2}{\gamma}-P_{\text {ratio }} \frac{\gamma+1}{\gamma}\right)} \\
P_{\text {cr }} \leq P_{\text {ratio }} \leq P_{\text {lim }} \\
\frac{P_{\text {ratio }}-1}{P_{\text {lim }}-1} \sqrt{\frac{2 \gamma}{\gamma-1}\left(P_{\text {lim }} \frac{2}{\gamma}-P_{\text {lim }} \frac{\gamma+1}{\gamma}\right)}
\end{array} \quad P_{\text {lim }}<P_{\text {ratio }}
\end{array}\right.
\end{aligned}
\] \\
\hline Constituent mass flow rates & \(\dot{m}_{i}=\dot{m}_{\text {orf }} Y_{u p s t r, i}\) \\
\hline Constant orifice area & \(A_{\text {eff }}=A_{\text {orf_cnst }} \cdot C d_{\text {cnst }}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l} 
External input orifice \\
area
\end{tabular} & \(A_{\text {eff }}=A_{\text {orf_ext }} \cdot C d_{\text {ext }}\) \\
\hline Throttle body geometry & \(\theta_{t h r}=P c t_{t h r} \cdot \frac{90}{100}\) \\
& \(A_{\text {eff_thr }}=\frac{\pi}{4} D_{t h r} 2 C_{d_{-} t h r}\left(\theta_{\text {thr }}\right)\) \\
\hline Heat flow rate & \(q_{\text {orf }}=\dot{m}_{\text {orf }} h_{\text {upstr }}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(A_{\text {eff }}, A_{\text {eff_thr }}\) & Effective orifice cross-sectional area \\
\(A_{\text {orf_cnst }}, A_{\text {orf_ext }}\) & Orifice area \\
\(C d_{\text {cnst }}, C d_{\text {ext }}\) & Discharge coefficient \\
\(R\) & Ideal gas constant \\
\(P_{\text {cr }}\) & Critical pressure at which choked flow occurs \\
\(\gamma\) & Ratio of specific heats \\
\(\Gamma\) & Flow function based on pressure ratio \\
\(P_{\text {ratio }}\) & Pressure ratio \\
\(P_{\text {upstr }}\) & Upstream orifice pressure \\
\(P_{\text {downstr }}\) & Downstream orifice pressure \\
\(P_{\text {lim }}\) & Pressure ratio limit to avoid singularities as the pressure ratio approaches 1 \\
\(y_{\text {upstri }}\) & Upstream species mass fraction for i \(=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}\), \\
\(\dot{m}_{i}\) & NO, NO \(2, \mathrm{PM}\), air, and burned gas \\
\(\theta_{t h r}\) & Mass flow rate for \(\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}_{2}, \mathrm{NO}_{2}, \mathrm{PM}\), air, \\
\(P c t_{t h r}\) & and burned gas \\
\(C_{d \_t h r}\) & Throttle angle \\
\(D_{t h r}\) & Percentage of throttle body that is open \\
\(\dot{m}_{\text {orf }}\) & Throttle discharge coefficient \\
\(h_{\text {upstr }}\) & Throttle body diameter at opening \\
\(q_{\text {orf }}\) & Orifice mass flow
\end{tabular}

The block uses the internal signal FlwDir to track the direction of the flow.

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descripti & Equations \\
\hline \multirow[t]{4}{*}{PwrInfo} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrHeatFlwIn & Heat flow rate at port A & \(q_{\text {orf }}\) \\
\hline & & PwrHeatFlw0u t & Heat flow rate at port B & - \(q_{\text {orf }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & Not used & & \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{A - Inlet orifice pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing orifice:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet orifice pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing orifice:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Area - Orifice area}
scalar
External area input for orifice area, \(A_{\text {orf_ext }}\), in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To create this port, select External input for the Orifice area model parameter.

\section*{ThrPct - Throttle body percent open \\ scalar}

Percentage of throttle body that is open, \(P c t_{\text {thr }}\).

\section*{Dependencies}

To create this port, select Throttle body geometry for the Orifice area model parameter.

\section*{Output}

A - Inlet mass flow rate, heat flow rate, temperature
two-way connector port
Bus containing:
- MassFlw - Mass flow rate through inlet, in kg/s
- HeatFlw - Inlet heat flow rate, in J/s
- Temp - Inlet temperature, in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{B - Outlet mass flow rate, heat flow rate, temperature}
two-way connector port
Bus containing:
- MassFlw - Outlet mass flow rate, in kg/s
- HeatFlw - Outlet heat flow rate, in J/s
- Temp - Outlet temperature, in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{22}{*}{Flw} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{PrsAdj}} & DwnstrmPrs & Downstream pressure & Pa \\
\hline & & & UpstrmPrs & Upstream pressure & Pa \\
\hline & & & PrsRatio & Pressure ratio & NA \\
\hline & & & DwnstrmTemp & Downstream temperature & K \\
\hline & & & UpstrmTemp & Upstream temperature & K \\
\hline & \multicolumn{3}{|l|}{OrfMassFlw} & Mass flow rate through orifice & kg/s \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{12}{*}{Species}} & 02MassFlw & Oxygen mass flow rate & kg/s \\
\hline & & & N2MassFlw & Nitrogen mass flow rate & kg/s \\
\hline & & & UnbrndFuelMas sFlw & Unburned gas mass flow rate & kg/s \\
\hline & & & C02MassFlw & Carbon dioxide mass flow rate & kg/s \\
\hline & & & H2OMassFlw & Water mass flow rate & kg/s \\
\hline & & & COMassFlw & Carbon monoxide mass flow rate & kg/s \\
\hline & & & NOMassFlw & Nitric oxide mass flow rate & kg/s \\
\hline & & & N02MassFlw & Nitrogen dioxide mass flow rate & kg/s \\
\hline & & & NOxMassFlw & Nitric oxide and nitrogen dioxide mass flow rate & kg/s \\
\hline & & & PmMassFlw & Particulate matter mass flow rate & kg/s \\
\hline & & & AirMassFlw & Air mass flow rate & kg/s \\
\hline & & & BrnedGasMassF lw & Burned gas mass flow rate & kg/s \\
\hline & \multirow[t]{4}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrHeatFlwIn & Heat flow rate at port A & W \\
\hline & & & PwrHeatFlwOut & Heat flow rate at port B & W \\
\hline & & \multicolumn{2}{|l|}{PwrNotTrnsfrd} & Not used & \\
\hline & & \multicolumn{2}{|l|}{PwrStored} & Not used & \\
\hline \multirow[t]{3}{*}{Area} & \multicolumn{3}{|l|}{FlwArea} & Cross-sectional flow area & m^2 \\
\hline & \multicolumn{3}{|l|}{EffctArea} & Effective orifice crosssectional area & \(\mathrm{m}^{\wedge} 2\) \\
\hline & \multicolumn{3}{|l|}{ThrAng} & Throttle area, if applicable & deg \\
\hline
\end{tabular}

\section*{Parameters}

Block Options
Orifice area model - Select model
Constant (default)|External input|Throttle body geometry
Orifice area model.

\section*{Dependencies}

The orifice area model enables the parameters on the Area Parameters tab.
Image type - Icon color
Cold (default) | Hot
Block icon color:
- Cold for blue.
- Hot for red.

\section*{General}

Ratio of specific heats, gamma - Ratio
1.3998 (default) | scalar

Ratio of specific heats, \(\gamma\).
Ideal gas constant, R-Constant
287.05 (default) | scalar

Ideal gas constant, \(R\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Pressure ratio linearize limit, Plim Limit
0.95 (default) | scalar

Pressure ratio limit to avoid singularities as the pressure ratio approaches \(1, P_{\text {lim }}\).
Area
Constant area value, Aorf_cnst - Area
. 1 (default) | scalar
Constant area value, \(A_{\text {orf_cnst }}\), in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select Constant for the Orifice area model parameter.

\section*{Discharge coefficient, Cd_cnst - Coefficient \\ 1 (default) | scalar}

Discharge coefficient for constant area, \(C d_{\text {cnst }}\).

\section*{Dependencies}

To enable this parameter, select Constant for the Orifice area model parameter.

\section*{Discharge coefficient, Cd_ext - Coefficient \\ 1 (default) | scalar}

Discharge coefficient for external area input, \(C d_{\text {ext }}\).

\section*{Dependencies}

To enable this parameter, select External input for the Orifice area model parameter.
Throttle diameter, Dthr - Diameter
50 (default) | scalar
Throttle body diameter at opening, \(D_{\text {thr }}\), in mm .

\section*{Dependencies}

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

\section*{Discharge coefficient table, ThrCd - Coefficient}
[0.001; 0.735] (default) | vector
Discharge coefficient table, \(C_{d_{\_} t h r}\).
Dependencies
To enable this parameter, select Throttle body geometry for the Orifice area model parameter.
Angle breakpoints, ThrAngBpts - Angle
[0; 90] (default)|vector
Angle breakpoints, \(T h r_{\text {ang_bpts, }}\), in deg.

\section*{Dependencies}

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Control Volume System | Heat Exchanger

Introduced in R2017a

\section*{Heat Exchanger}

Intercooler or exhaust gas recirculation (EGR) cooler


\section*{Description}

The Heat Exchanger block models a heat exchanger, for example, an intercooler or exhaust gas recirculation (EGR) cooler. The inlet (port C) connects to an engine flow component (flow restriction, compressor, turbine, or engine block). The outlet (port B) connects to a volume (control volume or environment). Based on the upstream temperature, heat exchanger effectiveness, and cooling medium temperature, the block determines the heat transfer rate and downstream temperature.

For the heat exchanger effectiveness and cooling medium temperature, you can specify either a constant value or an external input. For example, if you specify a heat exchanger effectiveness that is:
- Equal to 1, the downstream temperature is equal to the cooling medium temperature.
- Equal to 0 , there is no heat transfer to the cooling medium. The downstream temperature is equal to the upstream temperature.

The block assumes no pressure drop. To model pressure losses, use a Flow Restriction block.

\section*{Equations}

The Heat Exchanger block implements equations that use these variables.
\begin{tabular}{ll}
\(T_{\text {upstr }}\) & Upstream temperature \\
\(T_{\text {dnstr }}\) & Downstream temperature \\
\(T_{\text {cool }}\) & Cooling medium temperature \\
\(T_{\text {cool, cnst }}\) & Constant cooling medium temperature \\
\(T_{\text {cool, input }}\) & External input cooling medium temperature \\
\(\varepsilon\) & Heat exchanger effectiveness \\
\(\varepsilon_{\text {cnst }}\) & Constant heat exchanger effectiveness \\
\(\varepsilon_{\text {input }}\) & Input heat exchanger effectiveness \\
\(c_{p}\) & Specific heat at constant pressure \\
\(q_{h t}\) & Heat exchanger heat transfer rate \\
\(p_{f l w, \text { in }}\) & Pressure at inlet \\
\(p_{\text {vol, out }}\) & Pressure at outlet \\
\(T_{\text {vol, out }}\) & Temperature at outlet \\
\(h_{\text {vol, out }}\) & Specific enthalpy at outlet
\end{tabular}
\begin{tabular}{ll}
\(q_{\text {in }}\) & Heat flow rate at inlet \\
\(q_{\text {out }}\) & Heat flow rate at outlet \\
\(\dot{m}\) & Heat exchanger mass flow rate \\
\(T_{f l w, \text { in }}\) & Temperature at inlet \\
\(T_{\text {in }}\) & Heat exchanger inlet temperature \\
\(T_{\text {out }}\) & Heat exchanger outlet temperature \\
\(h_{\text {in }}\) & Inlet specific enthalpy
\end{tabular}

\section*{Heat Exchanger Effectiveness}

Heat exchanger effectiveness measures the effectiveness of heat transfer from the incoming hot fluid to the cooling medium:
\[
\varepsilon=\frac{T_{\text {upstr }}-T_{\text {dnstr }}}{T_{\text {upstr }}-T_{\text {cool }}}
\]

In an ideal heat exchanger, the downstream temperature equals the cooling temperature. The effectiveness is equal to 1 .
\[
\begin{aligned}
& T_{\text {dnstr }}=T_{\text {cool }} \\
& \varepsilon=1
\end{aligned}
\]

The Heat Exchanger block uses the effectiveness to determine the downstream temperature and heat transfer rate.
\[
\begin{aligned}
& T_{\text {dnstr }}=T_{\text {upstr }}-\varepsilon\left(T_{\text {upstr }}-T_{\text {cool }}\right) \\
& q_{h t}=\dot{m} c_{p}\left(T_{\text {upstr }}-T_{\text {dnstr }}\right)
\end{aligned}
\]

\section*{Fluid Flow}

Since the block assumes no pressure drop, \(P_{f l w, \text { in }}=P_{\text {vol, out }}\).
The flow component connection to the heat exchanger inlet determines the direction of the mass flow. Based on the mass flow rate direction, these temperature and heat flow equations apply.
\begin{tabular}{|l|l|l|}
\hline Fluid Flow & Mass Flow Rate & Temperatures and Heat Flow \\
\hline Forward - From & \(\dot{m} \geq 0\) & \(T_{\text {upstr }}=T_{f l w, \text { in }}\) \\
engine flow component & & \(T_{\text {in }}=T_{\text {upstr }}\) \\
to outlet volume & & \(T_{\text {out }}=T_{\text {dnstr }}\) \\
& & \(q_{\text {out }}=\dot{m} c_{p} T_{\text {dnstr }}\) \\
\hline Reverse - From outlet & \(\dot{m}<0\) & \(T_{\text {upstr }}=T_{\text {vol, out }}\) \\
volume to engine flow & & \(T_{\text {in }}=T_{\text {dnstr }}\) \\
component & & \(T_{\text {out }}=T_{\text {vol, out }}\) \\
& & \(h_{\text {in }}=c_{p} T_{\text {dnstr }}\) \\
& & \(q_{\text {out }}=\dot{m} h_{\text {vol }, \text { out }}\) \\
\hline
\end{tabular}

The block uses the internal signal FlwDir to track the direction of the flow.

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { PwrIn } \\
& \text { fo }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & ```
PwrHeatFlw
In
``` & Heat flow rate at port C & \(q_{\text {in }}\) \\
\hline & & PwrHeatFlw Out & Heat flow rate at port B & - \(q_{\text {out }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrHeatTrn sfr & Heat transfer rate to cooling medium & \(-q_{h t}\) \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & Not used & \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{C - Inlet mass flow rate, heat flow rate, temperature, mass fractions}
two-way connector port
Bus containing the heat exchanger:
- MassFlwRate - Mass flow rate at inlet, \(\dot{m}\), in kg/s
- HeatFlwRate - Heat flow rate at inlet, \(q_{i n}\), in J/s
- Temp - Temperature at inlet, \(T_{f l w, i n}\), in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- O2MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{B - Outlet volume pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the heat exchanger:
- Prs - Pressure at outlet, \(p_{\text {vol, out, }}\), in Pa
- Temp - Temperature at outlet, \(T_{\text {vol, out, }}\), in K
- Enth - Specific enthalpy at outlet, \(h_{\text {vol, out }}\), in \(\mathrm{J} / \mathrm{kg}\)
- MassFrac - Outlet mass fractions, dimensionless. Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Effct - Heat exchanger effectiveness \\ scalar}

Heat exchanger effectiveness, \(\varepsilon_{\text {input }}\).

\section*{Dependencies}

To create this port, set Effectiveness model to External input.

\section*{CoolTemp - Cooling medium temperature}
scalar
Cooling medium temperature, \(T_{\text {cool, input }}\).

\section*{Dependencies}

To create this port, set Cooling medium temperature input to External input

\section*{Output}

Info - Heat exchanger data
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline InletTemp & \begin{tabular}{l}
Heat exchanger inlet \\
temperature
\end{tabular} & K \\
\hline OutletTemp & \begin{tabular}{l}
Heat exchanger outlet \\
temperature
\end{tabular} & K \\
\hline HeatTrnsfrRate & \begin{tabular}{l}
Heat exchanger heat \\
transfer rate
\end{tabular} & \(\mathrm{J} / \mathrm{s}\) \\
\hline \multirow{3}{*}{ PwrInfo } & PwrTrnsfrd & PwrHeatFlwIn & Heat flow rate at port C
\end{tabular} W.

\section*{C - Inlet flow pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the heat exchanger:
- Prs - Pressure at inlet, \(p_{f l w, \text { in, }}\) in Pa
- Temp - Temperature at inlet, \(T_{i n}\), in K
- Enth - Specific enthalpy at inlet, \(h_{i n}\), in J/kg
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet volume mass flow rate, heat flow rate, temperature, mass fractions two-way connector port

Bus containing the heat exchanger:
- MassFlwRate - Mass flow rate at outlet, \(\dot{m}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Heat flow rate at outlet, \(q_{o u t}\), in J/s
- Temp - Temperature at outlet, \(T_{\text {out }}\), in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

Effectiveness model - Model type for heat effectiveness
Constant (default)|External input
Type of model to calculate the heat exchanger effectiveness.

\section*{Dependencies}

Selecting:
- External input creates the Effct port.
- Constant enables the Heat exchanger effectiveness, ep_cnst parameter.

\section*{Cooling medium temperature input - Specify type}

Constant (default)|External input
Cooling medium temperature input.

\section*{Dependencies}

Selecting:
- External input creates the CoolTemp port.
- Constant enables the Cooling medium temperature, T_cool_cnst parameter.

Image type - Icon color
Intercooler (default)|EGR cooler hot to cold|EGR cooler cold to hot
Block icon color:
- Intercooler for blue, to indicate an intercooler
- EGR cooler hot to cold for red to blue, to indicate EGR from hot to cold
- EGR cooler cold to hot for blue to red, to indicate EGR from cold to hot

Heat exchanger effectiveness, ep_cnst - Effectiveness
0.7 (default) | scalar

Constant heat exchanger effectiveness, \(\varepsilon_{\text {cnst }}\).

\section*{Dependencies}

To enable this parameter, select Constant for the Effectiveness model parameter.
Cooling medium temperature, T_cool_cnst - Temperature
300 (default) | scalar
Constant cooling medium temperature, \(T_{\text {cool, cnst }}\), in K .

\section*{Dependencies}

To enable this parameter, select Constant for the Cooling medium temperature input parameter.

\section*{Specific heat at constant pressure, cp - Specific heat 1005 (default) | scalar}

Specific heat at constant pressure, \(c_{p}\), in \(\mathrm{J} /\left(\mathrm{kg}^{*} \mathrm{~K}\right)\).

\section*{References}
[1] Eriksson, Lars and Nielsen, Lars. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

\section*{Extended Capabilities}
\(\mathbf{C} / \mathbf{C + +}\) Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Control Volume System | Flow Restriction

Introduced in R2017a

\section*{SI Controller}

Spark-ignition engine controller that uses the driver torque request

Library:

Powertrain Blockset / Propulsion / Combustion Engine Controllers

\section*{Description}

The SI Controller block implements a spark-ignition (SI) controller that uses the driver torque request to calculate the open-loop air, fuel, and spark actuator commands that are required to meet the driver demand.

You can use the SI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine, throttle, and turbocharger wastegate subsystems require the commands that are output from the SI Controller block.

The block uses the commanded torque and engine speed to determine these open-loop actuator commands:
- Throttle position percent
- Wastegate area percent
- Injector pulse-width
- Spark advance
- Intake cam phaser angle
- Exhaust cam phaser angle
- Exhaust gas recirculation (EGR) valve area percent

The SI Controller block has two subsystems:
- The Controller subsystem - Determines the commands based on the commanded torque, measured engine speed, and estimated cylinder air mass.
- The Estimator subsystem - Determines the estimated air mass flow, torque, and exhaust gas temperature from intake manifold gas pressure, intake manifold gas temperature, engine speed, and cam phaser positions.

The figure illustrates the signal flow.

The figure uses these variables.
\begin{tabular}{ll}
\(N\) & Engine speed \\
\(M A P\) & Cycle average intake manifold pressure \\
\(I A T\) & Intake air temperature \\
\(T_{i n, E G R}\) & Temperature at EGR valve inlet \\
\(M A T\) & Cycle average intake manifold gas absolute temperature \\
\(\varphi_{I C P}, \varphi_{I C P C M D}\) & Intake cam phaser angle and intake cam phaser angle command, respectively \\
\(\varphi_{E C P}, \varphi_{E C P C M D}\) & Exhaust cam phaser angle and exhaust cam phaser angle command, respectively \\
\(E G R a p\), & EGR valve area percent and EGR valve area percent command, respectively \\
\(E G R a p_{c m d}\) & \\
\(\Delta P_{E G R}\) & Pressure difference at EGR valve inlet and outlet \\
\(W A P_{c m d}\) & Turbocharger wastegate area percent command \\
\(S A\) & Spark advance \\
\(P w_{i n j}\) & Fuel injector pulse-width \\
\(T P P_{c m d}\) & Throttle position percent command
\end{tabular}

The Model-Based Calibration Toolbox was used to develop the tables that are available with the Powertrain Blockset.

\section*{Controller}

\section*{Air}

The block determines the commanded engine load (that is, normalized cylinder air mass) from a lookup table that is a function of commanded torque and measured engine speed.
\[
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
\]

To achieve the commanded load, the controller sets the throttle position percent and turbocharger wastegate area percent using feed forward lookup tables. The lookup tables are functions of the commanded load and measured engine speed.
\[
\begin{aligned}
& T A P_{c m d}=f_{\text {TAPcmd }}\left(L_{c m d}, N\right) \\
& T P P_{c m d}=f_{T P P c m d}\left(T A P_{c m d}\right) \\
& W A P_{c m d}=f_{W A P c m d}\left(L_{c m d}, N\right)
\end{aligned}
\]

To determine the cam phaser angle commands, the block uses lookup tables that are functions of estimated engine load and measured engine speed.
\[
\begin{aligned}
& \varphi_{\text {ICPCMD }}=f_{\text {ICPCMD }}\left(L_{e s t}, N\right) \\
& \varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
\end{aligned}
\]

The block calculates the desired engine load using this equation.
\[
L_{e s t}=\frac{C p s R_{\text {air }} T_{\text {std }} \dot{m}_{\text {air }, \text { est }}}{P_{s t d} V_{d} N}
\]

The equations use these variables.
\begin{tabular}{ll}
\(L_{e s t}\) & Estimated engine load \\
\(L_{c m d}\) & Commanded engine load \\
\(N\) & Engine speed \\
\(T_{c m d}\) & Commanded engine torque \\
\(T A P_{c m d}\) & Throttle area percent command \\
\(T P P_{c m d}\) & Throttle position percent command \\
\(W A P_{c m d}\) & Turbocharger wastegate area percent command \\
\(C p s\) & Crankshaft revolutions per power stroke \\
\(P_{s t d}\) & Standard pressure \\
\(T_{s t d}\) & Standard temperature \\
\(R_{\text {air }}\) & Ideal gas constant for air and burned gas mixture \\
\(V_{d}\) & Displaced volume \\
\(\dot{m}_{\text {air,est }}\) & Estimated engine air mass flow
\end{tabular}

The controller subsystem uses these lookup tables for the air calculations.
- The throttle area percent command lookup table, \(f_{\text {TAPcmd }}\), is a function of commanded load and engine speed
\[
T A P_{c m d}=f_{T A P c m d}\left(L_{c m d}, N\right)
\]
where:
- \(T A P_{c m d}\) is throttle area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(N\) is engine speed, in rpm.

- To account for the non-linearity of the throttle position to throttle area, the throttle position percent lookup table linearizes the open-loop air mass flow control.

The throttle position percent command lookup table, \(f_{T P P c m d}\), is a function of the throttle area percentage command
\[
T P P_{c m d}=f_{T P P c m d}\left(T A P_{c m d}\right)
\]
where:
- \(T P P_{c m d}\) is throttle position percentage command, in percent.
- \(T A P_{c m d}\) is throttle area percentage command, in percent.

- The wastegate area percent command lookup table, \(f_{\text {WAPcmd }}\), is a function of the commanded engine load and engine speed
\[
W A P_{c m d}=f_{W A P c m d}\left(L_{c m d}, N\right)
\]
where:
- \(W A P_{c m d}\) is wastegate area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(N\) is engine speed, in rpm.

- The commanded engine load lookup table, \(f_{\text {Lcmd }}\), is a function of the commanded torque and engine speed
\[
L_{c m d}=f_{\text {Lcmd }}\left(T_{c m d}, N\right)
\]
where:
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(T_{c m d}\) is commanded torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

- The intake cam phaser angle command lookup table, \(f_{\text {ICPCMD }}\), is a function of the engine load and engine speed
\[
\varphi_{\text {ICPCMD }}=f_{I C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{I C P C M D}\) is commanded intake cam phaser angle, in degrees crank advance.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

- The exhaust cam phaser angle command lookup table, \(f_{E C P C M D}\), is a function of the engine load and engine speed
\[
\varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{E C P C M D}\) is commanded exhaust cam phaser angle, in degrees crank retard.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{EGR}

EGR is typically expressed as a percent of total intake port flow.
\[
E G R_{p c t}=100 \frac{\dot{m}_{E G R}}{\dot{m}_{E G R}+\dot{m}_{\text {air }}}
\]

To calculate the EGR area percent command, the block uses equations and a lookup table.
\begin{tabular}{|l|l|}
\hline Equations & \(\dot{m}_{E G R s t d, c m d}=\dot{m}_{E G R, c m d} \frac{P_{s t d}}{P_{\text {in, }, G R}} \sqrt{\frac{T_{\text {in, }, G R}}{T_{\text {std }}}}\) \\
& \(\dot{m}_{E G R s t d, \max }=f_{E G R s t d, \max }\left(\frac{P_{\text {out }, E G R}}{P_{\text {in, } E G R}}\right)\) \\
& \(\dot{m}_{E G R, c m d}=E G R_{p c t, c m d} \dot{m}_{\text {intk }, \text { est }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Lookup table & \begin{tabular}{l}
The EGR area percent command, \(E_{G R a p}^{c m d}\), lookup table is a function of the normalized mass flow and pressure ratio
\[
E G R a p_{c m d}=f_{E G R a p, c m d}\left(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}, \frac{P_{o u t, E G R}}{P_{i n, E G R}}\right)
\] \\
where: \\
- EGRap cmd is commanded EGR area percent, dimensionless. \\
- \(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}\) is the normalized mass flow, dimensionless. \\
- \(\frac{P_{\text {out, }, E G R}}{P_{\text {in, } E G R}}\) is the pressure ratio, dimensionless.
\end{tabular} \\
\hline
\end{tabular}

The equations and table use these variables.
EGRap, EGR valve area percent and EGR valve area percent command, respectively
\(E G R a p_{\text {cmd }}\)
\(E G R_{\text {pct,cmd }}\)
\(\dot{m}_{E G R s t d, c m d}\) Commanded standard mass flow
\(\dot{m}_{E G R s t d, \max }\) Maximum standard mass flow
\(\dot{m}_{E G R, c m d} \quad\) Commanded mass flow
\(\dot{m}_{\text {intk, }}\) est \(\quad\) Estimated intake port mass flow
\(T_{\text {std }}, P_{\text {std }} \quad\) Standard temperature and pressure
\(T_{i n, E G R} \quad\) Temperature at EGR valve inlet
\(P_{\text {out }, E G R}, P_{\text {in,EGR }}\) Pressure at EGR valve inlet and outlet, respectively

\section*{Fuel}

The air-fuel ratio (AFR) impacts three-way-catalyst (TWC) conversion efficiency, torque production, and combustion temperature. The engine controller manages AFR by commanding injector pulsewidth from a desired relative AFR. The relative AFR, \(\lambda_{c m d}\), is the ratio between the commanded AFR and the stoichiometric AFR of the fuel.
\[
\lambda_{c m d}=\frac{A F R_{c m d}}{A F R_{\text {stoich }}}
\]
\[
A F R_{\text {cmd }}=\frac{\dot{\dot{m}}_{\text {air }, \text { est }}}{\dot{m}_{\text {fuel }, \text { cmd }}}
\]

The SI Controller block accounts for the extra fuel delivered to the SI engine during startup. If the engine speed is greater than the startup engine cranking speed, the SI Controller block enriches the optimal AFR, lambda, with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the engine coolant temperature at startup. The delta lambda exponentially decays to zero based on a time constant that is a function of the engine coolant temperature.

You can configure the block for open-loop and closed-loop AFR control.
\begin{tabular}{|l|l|l|}
\hline To & Use & \begin{tabular}{l}
Controls > Fuel > \\
Closed-loop feedback \\
Parameter Setting
\end{tabular} \\
\hline - Assess the dynamic and steady-state \\
\begin{tabular}{l}
accuracy of the controller airflow \\
estimation and fuel delivery.
\end{tabular} & \begin{tabular}{l}
(default) Open-loop \\
control
\end{tabular} & off \\
\hline \begin{tabular}{l}
Hold the average AFR close to \\
stoichiometric AFR to maintain a high \\
TWC conversion efficiency.
\end{tabular} & Closed-loop control & on \\
\hline
\end{tabular}

\section*{Open-Loop Control}

To create an input port for the commanded AFR (lambda), on the Controls > Fuel > Open-loop fuel pane, select Input lambda.

You can manually tune the catalyst for maximum efficiency during open-loop AFR control with or without dither. If you want to implement dither during open-loop control, on the Fuel tab, on the Closed-loop fuel pane, select Dither.

By default, the block is configured to use a lookup table for the commanded AFR.
The commanded lambda, \(\lambda_{c m d}\), lookup table is a function of estimated engine load and measured engine speed
\[
\lambda_{c m d}=f_{\lambda c m d}\left(L_{e s t}, N\right)
\]
where:
- \(\lambda_{\text {cmd }}\) is commanded relative AFR, dimensionless.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

The block calculates the estimated fuel mass flow rate using the commanded lambda, \(\lambda_{c m d}\), stoichiometric AFR, and estimated air mass flow rate.
\[
\dot{m}_{f u e l, c m d}=\frac{\dot{m}_{a i r, e s t}}{A F R_{c m d}}=\frac{\dot{m}_{a i r, e s t}}{\lambda_{c m d} A F R_{\text {stoich }}}
\]

The block assumes that the battery voltage and fuel pressure are at nominal settings where pulsewidth correction is not necessary. The commanded fuel injector pulse-width is proportional to the fuel mass per injection. The fuel mass per injection is calculated from the commanded fuel mass flow rate, engine speed, and the number of cylinders.
\[
P w_{i n j}=\left\{\begin{array}{cc}
\frac{\dot{m}_{f u e l}, c m d}{} C p s\left(\frac{60 \mathrm{~s}}{\min }\right)\left(\frac{1000 \mathrm{mg}}{g}\right)\left(\frac{1000 \mathrm{~g}}{\mathrm{~kg}}\right) \\
N S_{i n j} N_{c y l} & \text { when } \operatorname{Tr} q_{c m d}>0 \\
0 & \text { when } \operatorname{Tr} q_{c m d} \leq 0
\end{array}\right.
\]

\section*{Closed-Loop Control}

TWC converters are most efficient when the exhaust AFR is near the stoichiometric AFR, where the air and fuel burn most completely. Around this ideal point, the AFR is within the catalyst window in which the catalyst is most efficient at converting carbon monoxide, hydrocarbons, and nitrogen oxides to non-harmful exhaust products. Empirical studies show that oscillating the AFR around stoichiometry at an optimized AFR frequency, amplitude, and bias widens the TWC window, increasing catalyst conversion efficiency in the presence of unavoidable disturbances.

To keep production hardware costs down, AFR control systems include inexpensive switching oxygen sensors positioned in the engine exhaust stream upstream and downstream of the catalyst. The oxygen sensors have a narrow range. Essentially, they switch between too lean (i.e., more air is available than is required to burn the available fuel) and too rich (i.e., more air is available than is required to burn the available fuel).

The block implements a period-based method to control the average AFR at a value within the catalyst window for maximum conversion efficiency. Period-based AFR control is independent of the transport delay across the engine from the fuel injection point to the sensor measurement point. For more information about the method, see Developing a Period-Based Air-Fuel Ratio Controller Using a Low-Cost Switching Sensor.

\section*{Spark}

Spark advance is the crank angle before top dead center (BTDC) of the power stroke when the spark is delivered. The spark advance has an impact on engine efficiency, torque, exhaust temperature, knock, and emissions.

The spark advance lookup table is a function of estimated load and engine speed.
\[
S A=f_{S A}\left(L_{e s t}, N\right)
\]
where:
- \(S A\) is spark advance, in crank advance degrees.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

The equations use these variables.
\begin{tabular}{ll}
\(L_{\text {est }}\) & Estimated engine load, based on normalized cylinder air mass \\
\(N\) & Engine speed \\
\(f_{S A}\) & Lookup table for spark advance \\
\(N\) & Spark advance
\end{tabular}

Idle Speed
When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.
\begin{tabular}{|l|l|}
\hline If & Idle Speed Controller \\
\hline\(T r q_{\text {cmd,input }}<T r q_{\text {idlecmd,enable }}\) & Enabled \\
\hline\(T r q_{\text {idlecmd,enable }} \leq T r q_{\text {cmd,input }}\) & Not enabled \\
\hline
\end{tabular}

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:
\[
C_{i d l e}(z)=K_{p, \text { idle }}+K_{i, \text { idle }} \frac{t_{s}}{z-1}
\]

The idle speed commanded torque must be less than the maximum commanded torque:
\(0 \leq T r q_{\text {idlecomd }} \leq T r q_{\text {idlecmd }, \text { max }}\)

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller (\(\left.\operatorname{Tr} q_{\text {cmd,input }}<\operatorname{Tr} q_{i d l e c m d, e n a b l e}\right)\), the commanded engine torque is given by:
\(\operatorname{Tr} q_{c m d}=\max \left(\operatorname{Tr} q_{c m d, \text { input }}, \operatorname{Tr} q_{\text {idlecmd }}\right)\).
The equations use these variables.
\begin{tabular}{ll}
\(\operatorname{Tr} q_{c m d}\) & Commanded engine torque \\
\(\operatorname{Tr} q_{c m d, \text { input }}\) & Input commanded engine torque \\
\(\operatorname{Tr} q_{\text {idlecmd,enable }}\) & Threshold for enabling idle speed controller \\
\(\operatorname{Tr} q_{\text {idlecmd }}\) & Idle speed controller commanded torque \\
\(T r q_{\text {idlecmd,max }}\) & Maximum commanded torque \\
\(N_{\text {idle }}\) & Base idle speed \\
\(K_{p, \text { idle }}\) & Idle speed controller proportional gain \\
\(K_{i, \text { idle }}\) & Idle speed controller integral gain \\
Speed Limiter &
\end{tabular}

To prevent over revving the engine, the block implements an engine speed limit controller that limits the engine speed to the value specified by the Rev-limiter speed threshold parameter on the
Controls > Idle Speed tab.
If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Estimator}

The estimator subsystem determines the estimated air mass flow, torque, EGR mass flow, and exhaust temperature based on sensor feedback and calibration parameters.
\(\dot{m}_{\text {air }, \text { est }} \quad\) Estimated engine air mass flow
\(T r q_{\text {est }} \quad\) Estimated engine torque
\(T_{\text {exh,est }} \quad\) Estimated engine exhaust temperature
\(\dot{m}_{E G R, \text { est }} \quad\) Estimated low-pressure EGR mass flow

\section*{Air Mass Flow}

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|l|l|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air Mass & \begin{tabular}{l}
Uses the speed-density equation to calculate the engine air \\
mass flow, relating the engine air mass flow to the intake \\
manifold pressure and engine speed. Consider using this air \\
mass flow model in engines with fixed valvetrain designs.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

To calculate the engine air mass flow, the dual-independent cam phaser model uses:
- Empirical calibration parameters developed from engine mapping measurements
- Desktop calibration parameters derived from engine computer-aided design (CAD) data

In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
- Elimination of MAF sensors in dual cam-phased valvetrain applications
- Reasonable accuracy with changes in altitude
- Semiphysical modeling approach
- Bounded behavior
- Suitable execution time for electronic control unit (ECU) implementation
- Systematic development of a relatively small number of calibration parameters

To determine the estimated air mass flow, the block uses the intake air mass fraction. The EGR mass fraction at the intake port lags the mass fraction near the EGR valve outlet. To model the lag, the block uses a first order system with a time constant.
\[
y_{\text {intk,EGR,est }}=\frac{\dot{m}_{E G R, e s t}}{\dot{m}_{\text {intk,est }}} \frac{t_{s} z}{\tau_{E G R} z+t_{s}-\tau_{E G R}}
\]

The remainder of the gas is air.
\[
y_{i n t k, a i r, e s t}=1-y_{i n t k, E G R, e s t}
\]

The equations use these variables.
\begin{tabular}{ll}
\(y_{\text {intk,EGR,est }}\) & Estimated intake manifold EGR mass fraction \\
\(y_{\text {intk,air,est }}\) & Estimated intake manifold air mass fraction \\
\(\dot{m}_{E G R, \text { est }}\) & Estimated low-pressure EGR mass flow \\
\(\dot{m}_{\text {intk, est }}\) & Estimated intake port mass flow \\
\(\tau_{E G R}\) & EGR time constant \\
Torque &
\end{tabular}

To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|c|c|}
\hline Brake Torque Model & Description \\
\hline "SI Engine Torque Structure Model" & \begin{tabular}{l}
For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency. \\
If you select Crank angle pressure and torque on the block Torque tab, you can: \\
- Simulate advanced closed-loop engine controls in desktop simulations and on HIL bench, based on cylinder pressure recorded from a model or laboratory test as a function of crank angle. \\
- Simulate driveline vibrations downstream of the engine due to high-frequency crankshaft torsionals. \\
- Simulate engine misfires due to lean operation or spark plug fouling by using the injector pulse width input. \\
- Simulate cylinder deactivation effect (closed intake and exhaust valves, no injected fuel) on individual cylinder pressures, mean-value airflow, mean-value torque, and crank-angle-based torque. \\
- Simulate the fuel-cut effect on individual cylinder pressure, mean-value torque, and crank-angle-based torque.
\end{tabular} \\
\hline "SI Engine Simple Torque Model" & For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load. \\
\hline
\end{tabular}

\section*{EGR}

The controller estimates low-pressure mass flow, EGR valve inlet pressure, and EGR valve outlet pressure using an algorithm developed by F. Liu and J. Pfeiffer. The estimator requires measured EGR valve differential pressure, EGR valve area percent, intake air temperature, and EGR valve inlet temperature.

To estimate the EGR valve commands, the block uses:
- Equations
\[
\begin{aligned}
& \dot{m}_{\text {air }, \text { std }}=\dot{m}_{\text {air }, \text { est }} \frac{P_{\text {std }}}{P_{\text {amb }}} \sqrt{\frac{I A T}{T_{s t d}}} \\
& P_{\text {in, } E G R}=P_{\text {out }, E G R}+\Delta P_{E G R} \\
& \dot{m}_{E G R, e s t}=\dot{m}_{E G R, \text { std }} \frac{P_{\text {in, }, E G R}}{P_{\text {std }}} \sqrt{\frac{T_{\text {std }}}{T_{i n, E G R}}}
\end{aligned}
\]
- Tables
- The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio
\(\dot{m}_{E G R, s t d}=f_{E G R, s t d}\left(E G R a p, \frac{P_{\text {out }, E G R}}{P_{\text {in }, E G R}}\right)\)
where:
- \(\dot{m}_{E G R, s t d}\) is EGR valve standard mass flow, dimensionless.
- EGRap is EGR valve flow area percent, in percent.
- \(\frac{P_{\text {out }, E G R}}{P_{\text {in, EGR }}}\) is the pressure ratio, dimensionless.

- The pressure ratio is a function of the standard mass flow
\[
\frac{P_{\text {out, }, \text { GR }}}{P_{\text {amb }}}=f_{\text {intksys, pr }}\left(\dot{m}_{\text {air, std }}\right)
\]
where:
- \(\dot{m}_{a i r, s t d}\) is standard mass flow, in g/s.
- \(\frac{P_{\text {out, } E G R}}{P_{a m b}}\) is pressure ratio, dimensionless.

The equations use these variables.
EGRap EGR valve area percent command
IAT Intake air temperature
\begin{tabular}{ll}
\(\dot{m}_{\text {air, std }}, \dot{m}_{E G R, \text { std }}\) & Standard air and EGR valve mass flow, respectively \\
\(\dot{m}_{\text {air }, \text { est }}, \dot{m}_{E G R, \text { est }}\) & Estimated air and EGR valve mass flow, respectively \\
\(T_{\text {std }}, P_{\text {std }}\) & Standard temperature and pressure \\
\(T_{\text {amb }}, P_{\text {amb }}\) & Ambient temperature and pressure \\
\(\Delta P_{E G R}\) & Pressure difference at EGR valve inlet and outlet \\
\(T_{\text {in, }, G R}, T_{\text {out }, E G R}\) & Temperature at EGR valve inlet and outlet, respectively \\
\(P_{\text {in,EGR }}, P_{\text {out }, E G R}\) & Pressure at EGR valve inlet and outlet, respectively
\end{tabular}

\section*{Exhaust Temperature}

The exhaust temperature lookup table, \(f_{\text {Texh }}\), is a function of engine load and engine speed
\[
T_{e x h}=f_{\text {Texh }}(L, N)
\]
where:
- \(T_{e \times h}\) is engine exhaust temperature, in K .
- \(L\) is normalized cylinder air mass or engine load, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Ports}

Input

\section*{TrqCmd - Commanded engine torque \\ scalar}

Commanded engine torque, \(T r q_{\text {cmd,input, }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{EngSpd - Measured engine speed scalar}

Measured engine speed, \(N\), in rpm.

\section*{AmbPrs - Measured absolute ambient pressure scalar}

Measured ambient pressure, \(P_{A m b}\), in Pa.

\section*{Map - Measured intake manifold absolute pressure scalar}

Measured intake manifold absolute pressureMAP, in Pa.
Mat - Measured intake manifold absolute temperature scalar

Measured intake manifold absolute temperature, MAT, in K .
IntkCamPhase - Intake cam phaser angle
scalar
Intake cam phaser angle, \(\varphi_{I C P}\), in degCrkAdv, or degrees crank advance.
ExhCamPhase - Exhaust cam phaser angle
scalar
Exhaust cam phaser angle, \(\varphi_{E C P}\), in degCrkRet, or degrees crank retard.
Iat - Intake air temperature
scalar
Intake air temperature, \(I A T\), in K .

\section*{Ect - Engine cooling temperature}
scalar
Engine cooling temperature, \(T_{\text {coolant }}\), in K.
EgrVlvInTemp - EGR valve inlet temperature
scalar
EGR valve inlet temperature, \(T_{i n, E G R}\), in K .

\section*{EgrVlvAreaPct - EGR valve area percent} scalar

EGR valve area percent, EGRap, in \%.
EgrVlvDeltaPrs - EGR valve delta pressure scalar

EGR valve delta pressure, \(\Delta P_{E G R}\), in Pa.
02VoltSen - Oxygen sensor voltage
scalar
Oxygen sensor voltage for closed-loop air-fuel-ratio (lambda) control, in mV.

To configure the block to use closed-loop air-fuel-ratio control, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

\section*{LambdaCmd - Commanded AFR, lambda}
scalar
Commanded air-fuel-ratio (lambda), \(\lambda_{\text {cmd }}\), dimensionless.

\section*{Dependencies}

To create this port, on the Fuel tab, on the Open-loop fuel pane, select Input lambda.

\section*{IgSw - Ignition switch}

Boolean
State of the vehicle ignition switch, dimensionless.

\section*{Dependencies}

To create this port, on the Stop-Start tab, select Enable Engine Stop-Start.
ESSEnable - Engine Stop-Start Enable
Boolean
Command to enable or disable the stop-start logic, dimensionless.

\section*{Dependencies}

To create this port, on the Stop-Start tab, select Enable Engine Stop-Start. Select External Enable Port.

Output
Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline TrqCmd & Engine torque & \(T r q_{c m d}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline LdCmd & Commanded load & \(L_{c m d}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline ThrPosCmd & Throttle area percent command & \(T A P_{c m d}\) & \(\%\) \\
\hline WgAreaPctCmd & Wastegate area percent command & \(W A P_{c m d}\) & \(\%\) \\
\hline Inj Pw & Fuel injector pulse-width & \(P w_{i n j}\) & ms \\
\hline SpkAdv & Spark advance & SA & degBTDC \\
\hline IntkCamPhaseCmd & Intake cam phaser angle command & \(\varphi_{\text {ICPCMD }}\) & degCrkAdv \\
\hline ExhCamPhaseCmd & Exhaust cam phaser angle command & \(\varphi_{E C P C M D}\) & degCrkRet \\
\hline EgrVlvAreaPctCmd & Exhaust cam phaser angle command & \(E G R a p_{c m d}\) & \(\%\) \\
\hline FuelMassFlwCmd & EGR valve area percent command & \(\dot{m}_{\text {fuel, } c m d}\) & \(\mathrm{~kg} / \mathrm{s}\) \\
\hline AfrCmd & Commanded air-fuel ratio & \(A F R_{c m d}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline EstEngTrq & Estimated engine torque & Trq est & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EstNrmlzdAirCharg & Estimated normalized cylinder air mass & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline EstIntkPortMassFlw & Estimated intake port air mass flow rate & \(\dot{m}_{\text {intk, est }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline EstIntkAirMassFlw & Estimated air mass flow rate & \(\dot{m}_{\text {air,est }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline EstEgrMassFlw & \begin{tabular}{l}
Estimated low-pressure EGR mass flow \\
rate
\end{tabular} & \(\dot{m}_{\text {EGR, est }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline EstExhManGasTemp & \begin{tabular}{l}
Estimated exhaust manifold gas \\
temperature
\end{tabular} & \(T_{\text {exhest }}\) & K \\
\hline EngRevLimAct & \begin{tabular}{l}
Flag that indicates if rev-limiter control \\
is active
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline ClsdLpFuelMult & \begin{tabular}{l}
Fuel injector pulse-width multiplier for \\
closed-loop AFR control
\end{tabular} & Pwinj_mult & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}

\section*{ThrPosPctCmd - Throttle area percent command \\ scalar}

Throttle area percent command, \(T A P_{c m d}\).
WgAreaPctCmd - Wastegate area percent command scalar

Wastegate area percent command, \(W A P_{\text {cmd }}\).

\section*{InjPw - Fuel injector pulse-width \\ scalar}

Fuel injector pulse-width, \(P w_{i n j}\), in ms.

\section*{SpkAdv - Spark advance}
scalar

Spark advance, \(S A\), in degrees crank angle before top dead center (degBTDC).

\section*{IntkCamPhaseCmd - Intake cam phaser angle command scalar}

Intake cam phaser angle command, \(\varphi_{I C P C M D}\).
ExhCamPhaseCmd - Exhaust cam phaser angle command scalar

Exhaust cam phaser angle command, \(\varphi_{E C P C M D}\).

\section*{EgrVlvAreaPctCmd - EGR valve area percent command scalar}

EGR valve area percent command, \(E_{\text {GRap }}^{\text {cmd }}\), in \%.

\section*{Parameters}

\section*{Configuration}

Air mass flow estimation model - Select air mass flow estimation model
Dual Variable Cam Phasing (default)|Simple Speed-Density
To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|l|l|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air Mass & \begin{tabular}{l}
Uses the speed-density equation to calculate the engine air \\
mass flow, relating the engine air mass flow to the intake \\
manifold pressure and engine speed. Consider using this air \\
mass flow model in engines with fixed valvetrain designs.
\end{tabular} \\
\hline "SI Engine Dual-Independent Cam & \begin{tabular}{l}
To calculate the engine air mass flow, the dual-independent \\
cam phaser model uses:
\end{tabular} \\
& - \begin{tabular}{l}
Empirical calibration parameters developed from engine \\
mapping measurements
\end{tabular} \\
& - \begin{tabular}{l}
Desktop calibration parameters derived from engine \\
computer-aided design (CAD) data
\end{tabular} \\
& \begin{tabular}{l}
In contrast to typical embedded air mass flow calculations \\
based on direct air mass flow measurement with an air \\
mass flow (MAF) sensor, this air mass flow model offers:
\end{tabular} \\
& - \begin{tabular}{l}
Elimination of MAF sensors in dual cam-phased \\
valvetrain applications
\end{tabular} \\
& - Reasonable accuracy with changes in altitude \\
& - \begin{tabular}{l}
Semiphysical modeling approach
\end{tabular} \\
& - \begin{tabular}{l}
Bounded behavior \\
Suitable execution time for electronic control unit (ECU) \\
implementation
\end{tabular} \\
& - Systematic development of a relatively small number of \\
calibration parameters
\end{tabular}

\section*{Dependencies}

The table summarizes the parameter dependencies.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Air Mass Flow \\
Estimation Model
\end{tabular} & Enables Parameters on Estimation > Air Tab \\
\hline Dual Variable & Cylinder volume at intake valve close table, f_vivc \\
Cam Phasing & Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt \\
& Cylinder trapped mass correction factor, f_tm_corr \\
& Normalized density breakpoints, f_tm_corr_nd_bpt \\
& Engine speed breakpoints, f_tm_corr_n_bpt \\
& Air mass flow, f_mdot_air \\
& Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt \\
& \begin{tabular}{l}
Trapped mass flow breakpoints, f_mdot_trpd_bpt \\
Air mass flow correction factor, f_mdot_air_corr \\
Engine load breakpoints for air mass flow correction, \\
f_mdot_air_corr_ld_bpt
\end{tabular} \\
& Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
\end{tabular}\(|\)\begin{tabular}{ll}
Speed-density volumetric efficiency, f_nv \\
Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt \\
Speed-density engine speed breakpoints, f_nv_n_bpt
\end{tabular}

\section*{Torque estimation model - Select torque estimation model \\ Torque Structure (default)|Simple Torque Lookup}

To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|c|c|}
\hline Brake Torque Model & Description \\
\hline "SI Engine Torque Structure Model" & \begin{tabular}{l}
For the structured brake torque calculation, the SI engine uses tables for the inner torque, friction torque, optimal spark, spark efficiency, and lambda efficiency. \\
If you select Crank angle pressure and torque on the block Torque tab, you can: \\
- Simulate advanced closed-loop engine controls in desktop simulations and on HIL bench, based on cylinder pressure recorded from a model or laboratory test as a function of crank angle. \\
- Simulate driveline vibrations downstream of the engine due to high-frequency crankshaft torsionals. \\
- Simulate engine misfires due to lean operation or spark plug fouling by using the injector pulse width input. \\
- Simulate cylinder deactivation effect (closed intake and exhaust valves, no injected fuel) on individual cylinder pressures, mean-value airflow, mean-value torque, and crank-angle-based torque. \\
- Simulate the fuel-cut effect on individual cylinder pressure, mean-value torque, and crank-angle-based torque.
\end{tabular} \\
\hline "SI Engine Simple Torque Model" & For the simple brake torque calculation, the SI engine block uses a torque lookup table map that is a function of engine speed and load. \\
\hline
\end{tabular}

\section*{Dependencies}

The table summarizes the parameter dependencies.
\begin{tabular}{|l|l|}
\hline Torque Estimation Model & Enables Parameters on Estimation > Torque Tab \\
\hline Torque Structure & Inner torque table, f_tq_inr \\
& Friction torque table, f_tq_fric \\
& Engine temperature modifier on friction torque, f_fric_temp_mod \\
& Engine temperature modifier breakpoints, f_fric_temp_bpt \\
& Pumping torque table, f_tq_pump \\
& Optimal spark table, f_sa_opt \\
& Inner torque load breakpoints, f_tq_inr_l_bpt \\
& Inner torque speed breakpoints, f_tq_inr_n_bpt \\
& Spark efficiency table, f_m_sa \\
& Spark retard from optimal, f_del_sa_bpt \\
& Lambda efficiency, f_m_lam \\
& Lambda breakpoints, f_m_lam_bpt \\
\hline Simple Torque Lookup & Torque table, f_tq_nl \\
& Torque table load breakpoints, f_tq_nl_l_bpt \\
& Torque table speed breakpoints, f_tq_nl_n_bpt \\
\hline
\end{tabular}

\section*{Controls}

Air
Engine commanded load table, f_lcmd - Lookup table array

The commanded engine load lookup table, \(f_{\text {Lcmd }}\), is a function of the commanded torque and engine speed
\[
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
\]
where:
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(T_{c m d}\) is commanded torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.

Torque command breakpoints, f_lcmd_tq_bpt - Breakpoints

163.6 175] (default) |vector

Torque command breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Speed breakpoints, f_lcmd_n_bpt - Breakpoints}
[750 1054 1357 1661 19642268257128753179348237864089439346965000] (default) | vector

Speed breakpoints, in rpm.
Throttle area percent, f_tap - Lookup table, \%
array
The throttle area percent command lookup table, \(f_{\text {TAPcmd }}\), is a function of commanded load and engine speed
\[
T A P_{c m d}=f_{T A P c m d}\left(L_{c m d}, N\right)
\]
where:
- \(T A P_{\text {cmd }}\) is throttle area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(N\) is engine speed, in rpm.

```

Throttle area percent load breakpoints, f_tap_ld_bpt - Breakpoints
[0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175
1.25] (default)|vector

```

Throttle area percent load breakpoints, dimensionless.
Throttle area percent speed breakpoints, f_tap_n_bpt - Breakpoints
[750 1054 1357166119642268257128753179348237864089439346965000] (default) | vector

Throttle area percent speed breakpoints, in rpm.
Throttle area percent to position percent table, f_tpp - Lookup table [0 100] (default)|vector

The throttle position percent command lookup table, \(f_{T P P c m d}\), is a function of the throttle area percentage command
\[
T P P_{c m d}=f_{T P P c m d}\left(T A P_{c m d}\right)
\]
where:
- \(T P P_{c m d}\) is throttle position percentage command, in percent.
- \(T A P_{c m d}\) is throttle area percentage command, in percent.

Throttle area percent to position percent area breakpoints, f_tpp_tap_bpt Breakpoints
```

[0 100] (default)|vector

```

Throttle area percent to position percent area breakpoints, dimensionless.
```

Wastegate area percent, f_wap - Lookup table, %
array

```

The wastegate area percent command lookup table, \(f_{\text {WAPcmd }}\), is a function of the commanded engine load and engine speed
\[
W A P_{c m d}=f_{W A P c m d}\left(L_{c m d}, N\right)
\]
where:
- \(W A P_{c m d}\) is wastegate area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(\quad N\) is engine speed, in rpm.

Load breakpoints, f_wap_ld_bpt - Breakpoints
\([0.20 .2750 .350 .4 \overline{2} 50.50 .5750 .650 .7250 .80 .8750 .951 .0251 .11 .175\)
1.25] (default) | vector

Load breakpoints, dimensionless.

\section*{Speed breakpoints, f_wap_n_bpt - Breakpoints, rpm}
[750 1054 1357166119642268257128753179348237864089439346965000]
(default) | vector
Speed breakpoints, in rpm.

\section*{Intake cam phaser angle, f_icp - Lookup table}
array
The intake cam phaser angle command lookup table, \(f_{\text {ICPCMD }}\), is a function of the engine load and engine speed
\[
\varphi_{I C P C M D}=f_{I C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{I C P C M D}\) is commanded intake cam phaser angle, in degrees crank advance.
- \(L_{e s t}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

Exhaust cam phaser angle, f_ecp - Lookup table
array
The exhaust cam phaser angle command lookup table, \(f_{E C P C M D}\), is a function of the engine load and engine speed
\[
\varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{E C P C M D}\) is commanded exhaust cam phaser angle, in degrees crank retard.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Load breakpoints, f_cp_ld_bpt - Breakpoints}
```

[0.2 $0.2750 .350 .4 \overline{2} 50.50 .5750 .650 .725$
0.80 .8750 .951 .0251 .11 .175
1.25] (default) | vector

```

Load breakpoints, dimensionless.
Speed breakpoints, f_cp_n_bpt - Breakpoints
[750 1054 1357 \(1661 \quad \overline{1} 96 \overline{4} \quad \overline{2} 26825712875317934823786408943934696\) 5000] (default) | vector

Speed breakpoints, in rpm.
```

Commanded EGR percent, f_egrpct_cmd - Lookup table

```
array

The EGR percent command, \(E G R_{p c t, c m d}\), lookup table is a function of estimated engine load and engine speed
\[
E G R_{p c t, c m d}=f_{E G R p c t, c m d}\left(L_{e s t}, N\right)
\]
where:
- \(E G R_{\text {pct,cmd }}\) is commanded EGR percent, dimensionless.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Load breakpoints, f_egrpct_ld_bpt - Breakpoints}
[0 0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8 0.875 0.95 1.025 1.1 1.175 1.25] (default) | vector

Engine load breakpoints, L, dimensionless.

\section*{Speed breakpoints, f_egrpct_n_bpt - Breakpoints}
[750 1054 \(13571661 \quad \overline{1} 96422 \overline{6} 8{ }^{2} 25712875317934823786408943934696\) 5000] (default) | vector

Engine speed breakpoints, \(N\), in rpm.

\section*{EGR valve area percent, f_egr_areapct_cmd - Lookup table}
array
The EGR area percent command, \(E G R a p_{\text {cmd }}\), lookup table is a function of the normalized mass flow and pressure ratio
\[
E_{G R a p}^{c m d} \text { }=f_{E G R a p, c m d}\left(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, \max }}, \frac{P_{\text {out }, E G R}}{P_{\text {in, }, E G R}}\right)
\]
where:
- EGRap \({ }_{c m d}\) is commanded EGR area percent, dimensionless.
- \(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, \max }}\) is the normalized mass flow, dimensionless.
- \(\frac{P_{\text {out }, E G R}}{P_{\text {in, }, G R}}\) is the pressure ratio, dimensionless.

Open EGR valve standard flow, f_egr_max_stdflow - Breakpoints
[74.87 74.87 74.74 74.3973.81 72.98 71.91 70.58 68.97 67.06 64.84 62.25
\(59.2755 .8151 .7947 .0736 .3324 .2212 .110]\) (default)|vector
Maximum standard EGR valve mass flow breakpoints, \(\dot{m}_{E G R s t d, ~ m a x ~}\) in \(\mathrm{N} \cdot \mathrm{m}\).
Normalized EGR valve standard flow breakpoints, f_egr_areapct_nrmlzdflow_bpt - Breakpoints
\(\left[\begin{array}{lllllllllllllll}0 & 0.03448 & 0.06897 & 0.1034 & 0.1379 & 0.1724 & 0.2069 & 0.2414 & 0.2759 & 0.3103 & 0.3448\end{array}\right.\) 0.37930 .41380 .44830 .48280 .51720 .55170 .58620 .62070 .65520 .68970 .7241
\(0.75860 .79310 .82760 .86210 .89660 .9310 .96551]\) (default)|vector
Normalized mass flow breakpoints, \(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, \max }}\), dimensionless.
EGR valve pressure ratio breakpoints, f_egr_areapct_pr_bpt - Breakpoints vector

Pressure ratio breakpoints, \(\frac{P_{o u t, E G R}}{P_{\text {in, } E G R}}\), dimensionless.
Fuel
Injector slope, Sinj - Slope
6.452 (default)| scalar

Fuel injector slope, \(S_{i n j}\), in \(\mathrm{mg} / \mathrm{ms}\).
Stoichiometric air-fuel ratio, afr_stoich - Ratio 14.6 (default) | scalar

Stoichiometric air-fuel ratio, \(A F R_{\text {stoich }}\).
Relative air-fuel ratio lambda, f_lamcmd - Air-fuel-ratio (AFR) lookup table array

The commanded lambda, \(\lambda_{c m d}\), lookup table is a function of estimated engine load and measured engine speed
\[
\lambda_{c m d}=f_{\lambda c m d}\left(L_{e s t}, N\right)
\]
where:
- \(\lambda_{\text {cmd }}\) is commanded relative AFR, dimensionless.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.
Load breakpoints, f_lamcmd_ld_bpt - Breakpoints
\(\left[\begin{array}{llllllllllllllllllll}0.2 & 0.275 & 0.35 & 0.4 \overline{2} 5 & 0.5 & 0 & 0.5 \overline{7} 5 & 0.65 & 0.725 & 0.8 & 0.875 & 0.95 & 1.025 & 1.1 & 1.175\end{array}\right.\)
1.25] (default) | vector

Load breakpoints, dimensionless.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.

\section*{Speed breakpoints, f_lamcmd_n_bpt - Breakpoints}
[750 1054 1357 1661 19642268257128753179348237864089439346965000]
(default) | vector
Speed breakpoints, in rpm.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.
```

Engine startup lambda enrichment delta vs coolant temperature, f_startup_lambda_delta - Lookup table
[0.5 0.3 0.2 0] (default)|vector

```

Engine startup lambda enrichment delta as a function of coolant temperature, dimensionless.
The SI Controller block uses this parameter to account for the extra fuel delivered to the sparkignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially
decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

Dependencies
To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.
Engine startup lambda enrichment delta time constant vs coolant temperature, f_startup_lambda_delta_timecnst - Lambda time constant
[90 40 12 0] (default)|vector
Engine startup lambda enrichment delta time constant versus coolant temperature, in s.
The SI Controller block uses this parameter to account for the extra fuel delivered to the sparkignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.
Engine startup coolant temperature breakpoints, f_startup_ect_bpt - Breakpoints [-40 020 50] (default)|vector

Engine startup coolant temperature breakpoints, in C.
The SI Controller block uses this parameter to account for the extra fuel delivered to the sparkignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.

\section*{Closed-loop feedback - Minimize commanded AFR error off (default) | on}

Select option to minimize the commanded air-fuel-ratio (lambda), \(\lambda_{\text {cmd }}\) error.

\section*{Dependencies}

Selecting this parameter enables these parameters:
- Closed-loop fuel proportional gain, ClsdLpFuelPGain
- Closed-loop fuel integral gain, ClsdLpFueliGain
- Closed-loop fuel integrator limit, ClsdLpFuelIntgLmt
- Lambda dither amplitude, LambdaDitherAmp
- Lambda dither frequency, LambdaDitherFrq
- Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen
- Oxygen sensor minimum voltage reset, O2ResetMinVoltSen
- Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen
- Oxygen sensor voltage learn update period, 02LearnUpdatePerSen
- Oxygen sensor voltage amplitude minimum, 02AmpMinVoltSen
- Oxygen sensor ready voltage, O2ReadyVoltSen
- Oxygen sensor not ready voltage, 02NotReadyVoltSen

Dither - Model catalytic conversion efficiency
off (default) | on
Configure the block to model dither. For open-loop analysis, select this option to tune for maximum catalytic conversion efficiency.

\section*{Dependencies}

By default, selecting Closed-loop feedback configures the block to model dither.
To enable this parameter for open-loop air-fuel-ratio (lambda) commands, clear Closed-loop feedback.

Selecting this parameter enables these parameters:
- Lambda dither amplitude, LambdaDitherAmp
- Lambda dither frequency, LambdaDitherFrq

Closed-loop fuel proportional gain, ClsdLpFuelPGain - Proportional gain
0.005 (default) | scalar

Closed-loop fuel proportional gain, dimensionless.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Closed-loop fuel integral gain, ClsdLpFuelIGain - Integral gain 0.05 (default)| scalar

Closed-loop fuel integral gain, dimensionless.
Dependencies
To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Closed-loop fuel integrator limit, ClsdLpFuelIntgLmt - Integrator limit 0.2 (default) | scalar

Closed-loop fuel integrator limit, dimensionless.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Lambda dither amplitude, LambdaDitherAmp - Amplitude
0.03 (default) | scalar

Lambda dither amplitude, dimensionless.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select either Closed-loop feedback or Dither.

Lambda dither frequency, LambdaDitherFrq - Frequency
0.75 (default) | scalar

Lambda dither frequency, in Hz .

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select either Closed-loop feedback or Dither.

Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen - Closed-loop AFR control
2500 (default) | scalar
Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Oxygen sensor minimum voltage reset, O2ResetMinVoltSen - Closed-loop AFR control 0 (default)| scalar

Oxygen sensor minimum voltage reset, O2ResetMinVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen - Closed-loop AFR control 5000 (default) | scalar

Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen, in mV.
Dependencies
To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Oxygen sensor voltage learn update period, 02LearnUpdatePerSen - Closed-loop AFR control
4 (default) | scalar
Oxygen sensor voltage learn update period, O2LearnUpdatePerSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.
```

Oxygen sensor voltage amplitude minimum, 02AmpMinVoltSen - Closed-loop AFR
control
250 (default) | scalar

```

Oxygen sensor voltage amplitude minimum, O2AmpMinVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Oxygen sensor ready voltage, O2ReadyVoltSen - Closed-loop AFR control 1150 (default) | scalar

Oxygen sensor ready voltage, O2ReadyVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Oxygen sensor not ready voltage, O2NotReadyVoltSen - Closed-loop AFR control 1950 (default) | scalar

Oxygen sensor not ready voltage, O2NotReadyVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

Spark
Spark advance table, f_sa - Lookup table
array
The spark advance lookup table is a function of estimated load and engine speed.
\[
S A=f_{S A}\left(L_{e s t}, N\right)
\]
where:
- \(S A\) is spark advance, in crank advance degrees.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

Load breakpoints, f_sa_ld_bpt - Breakpoints
\([0.20 .2750 .350 .4 \overline{2} 50.50 .5750 .650 .7250 .80 .8750 .951 .0251 .11 .175\)
1.25] (default)| vector

Load breakpoints, dimensionless.

\section*{Speed breakpoints, f_sa_n_bpt - Breakpoints}
[750 1054 1357 16611964226825712875317934823786408943934696 5000]
(default) | vector
Speed breakpoints, in rpm.
Idle Speed
Target idle speed, N_idle - Speed
750 (default) | scalar
Target idle speed, \(N_{\text {idle }}\), in rpm.
Enable torque command limit, Trq_idlecmd_enable - Torque
1 (default) | scalar
Torque to enable the idle speed controller, \(\operatorname{Tr}_{\text {idlecmd }_{\text {, enable }}, \text { in }} \mathrm{N} \cdot \mathrm{m}\).
Maximum torque command, Trq_idlecmd_max - Torque
50 (default) | scalar
Maximum idle controller commanded torque, \(\mathrm{Trq}_{\text {idlecmd, max }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Proportional gain, Kp_idle - PI Controller}
0.05 (default) | scalar

Proportional gain for idle speed control, \(K_{p, i d l e}\), in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rpm}\).
Integral gain, Ki_idle - PI Controller
0.2 (default) | scalar

Integral gain for idle speed control, \(K_{i, i d l e}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rpm} \cdot \mathrm{s})\).
Rev-limiter speed threshold - Engine speed limit
scalar
Engine speed limit, \(N_{\text {lim }}\), in rpm.

If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Engine cranking speed, CrankSpeed - Engine speed 150 (default) | scalar}

Engine cranking speed, in rpm.

\section*{Stop-Start}

\section*{Enable Engine Stop-Start - Select to enable the engine stop-start logic off (default) |on}

Select to enable the engine stop-start logic. Selecting this option will activate additional parameters to modify the behavior of the Engine Stop-Start block.

\section*{External Enable Port - Create input port}
off (default) | on
Select to add a port to the engine controller block which enables or disables the stop-start logic.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{Engine stop time, EngStopTime [s] - Engine stop time \\ 5 (default) | scalar}

Engine stop time for the stop-start logic, in s.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{Catalyst light off time, CatLight0ffTime [s] - Catalyst light off time} 0 (default) | scalar

Catalyst light off time for the stop-start logic, in s.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{Sample time, Ts [s] - Sample time}
0.01 (default) | scalar

Sample time for the stop-start logic, in s.

\section*{Dependencies}

To enable this parameter, on the Stop-Start tab, select Enable Engine Stop-Start.

\section*{Estimation}

Air
Number of cylinders, NCyl - Engine cylinders
4 (default) | scalar
Number of engine cylinders, \(N_{\text {cyl }}\) -
Crank revolutions per power stroke, Cps - Revolutions per stroke
2 (default)| scalar
Crankshaft revolutions per power stroke, \(C p s\), in rev/stroke.
Total displaced volume, Vd - Volume
0.0015 (default) | scalar

Displaced volume, \(V_{d}\), in \(\mathrm{m}^{\wedge} 3\).
Ideal gas constant air, Rair - Constant 287 (default) | scalar

Ideal gas constant, \(R_{\text {air }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Air standard pressure, Pstd - Pressure} 101325 (default) | scalar

Standard air pressure, \(P_{\text {std }}\), in Pa.

\section*{Air standard temperature, Tstd - Temperature}
293.15 (default) | scalar

Standard air temperature, \(T_{\text {std }}\), in K .

\section*{Speed-density volumetric efficiency, f_nv - Lookup table array}

The engine volumetric efficiency lookup table, \(f_{\eta_{v^{\prime}}}\), is a function of intake manifold absolute pressure and engine speed
\[
\eta_{v}=f_{\eta_{v}}(M A P, N)
\]
where:
- \(\eta_{v}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.

Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt - Breakpoints [31 40.6450 .2959 .9369 .5779 .2188 .8698 .5108 .1117 .8127 .4137 .1146 .7 156.4 166] (default) | vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.
```

Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints
[750 1054 1357 1661 1964 2268 2571 2875 3179 3482 3786 4089 4393 4696 5000]
(default)| vector

```

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.

Cylinder volume at intake valve close table, f_vivc - 2-D lookup table array

The cylinder volume at intake valve close table (IVC), \(f_{V i v c}\) is a function of the intake cam phaser angle
\[
V_{I V C}=f_{V i v C}\left(\varphi_{I C P}\right)
\]
where:
- \(V_{I V C}\) is cylinder volume at IVC, in L .
- \(\varphi_{I C P}\) is intake cam phaser angle, in crank advance degrees.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Engine speed breakpoints, f_tm_corr_n_bpt - Breakpoints

4105432945534776 5000] (default)| vector
Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt - Breakpoints
 34.2136 .8439 .4742 .1144 .7447 .37 50] (default) | vector

Cylinder volume at intake valve close table breakpoints.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Cylinder trapped mass correction factor, f_tm_corr - Lookup table array

The trapped mass correction factor table, \(f_{T M c o r r}\), is a function of the normalized density and engine speed
\[
T M_{\text {corr }}=f_{T M c o r r}\left(\rho_{\text {norm }}, \quad N\right)
\]
where:
- \(T M_{\text {corr }}\), is trapped mass correction multiplier, dimensionless.
- \(\rho_{\text {norm }}\) is normalized density, dimensionless.
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt - Breakpoints
\(\left[\begin{array}{llllllllllllllllllll}0.3 & 0.3895 & 0.4789 & 0.5684 & 0.6579 & 0.7474 & 0.8368 & 0.9263 & 1.016 & 1.105 & 1.195 & 1.284\end{array}\right.\)
\(1.3741 .4631 .5531 .6421 .7321 .8211 .9112]\) (default)|vector
Normalized density breakpoints.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

\section*{Intake mass flow, f_mdot_intk - Lookup table}
array
The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow
\[
\dot{m}_{\text {intkideal }}=f_{\text {intkideal }}\left(\varphi_{E C P}, T M_{\text {flow }}\right)
\]
where:
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).
- \(\varphi_{E C P}\) is exhaust cam phaser angle, in degrees crank retard.
- \(T M_{\text {flow }}\) is flow rate equivalent to corrected trapped mass at the current engine speed, in \(\mathrm{g} / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt - Breakpoints
[0 2.6325 .2637 .89510 .5313 .1615 .7918 .4221 .0523 .6826 .3228 .9531 .58
34.2136 .8439 .4742 .1144 .7447 .37 50] (default)|vector

Exhaust cam phaser breakpoints for air mass flow lookup table.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Trapped mass flow breakpoints, f_mdot_trpd_bpt - Breakpoints
[0 5.79 11.58 17.37 23.1628 .95 34.74 \(40.5 \overline{3} 46.3252 .1157 .8963 .6869 .47\)
75.2681 .0586 .8492 .6398 .42104 .2 110] (default)|vector

Trapped mass flow breakpoints for air mass flow lookup table.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual
Variable Cam Phasing.

\section*{Air mass flow correction factor, f_mdot_air_corr - Lookup table} array

The intake air mass flow correction lookup table, \(f_{\text {aircorr }}\), is a function of ideal load and engine speed
\[
\dot{m}_{\text {air }}=\dot{m}_{\text {intkideal }} f_{\text {aircorr }}\left(L_{\text {ideal }}, N\right)
\]
where:
- \(L_{\text {ideal }}\) is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.
- \(\dot{m}_{a i r}\) is engine intake air mass flow final correction at steady-state cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt - Breakpoints
```

vector

```

Engine load breakpoints for air mass flow final correction.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.
```

Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt -
Breakpoints
[750 973.7 1197 1421 1645 1868 2092 2316 2539 2763 2987 3211 3434 3658 3882
4 1 0 5 4 3 2 9 4 5 5 3 4 7 7 6 ~ 5 0 0 0 ] ~ ( d e f a u l t ) \| ~ v e c t o r ~

```

Engine speed breakpoints for air mass flow final correction.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

EGR flow time constant, tau_egr - Constant
0.2 (default) | scalar

EGR flow time constant, \(\tau_{E G R}\), in s .
Intake system pressure ratio table, f_intksys_stdflow_pr - Table array

The pressure ratio is a function of the standard mass flow
\[
\frac{P_{\text {out, EGR }}}{P_{\text {amb }}}=f_{\text {intksys, pr }}\left(\dot{m}_{\text {air, std }}\right)
\]
where:
- \(\dot{m}_{a i r, s t d}\) is standard mass flow, in \(\mathrm{g} / \mathrm{s}\).
- \(\frac{P_{\text {out }, E G R}}{P_{a m b}}\) is pressure ratio, dimensionless.

\section*{Standard mass flow rate breakpoints for intake pressure ratio, f_intksys_stdflow_bpt - Breakpoints \\ 212.2 216.1 219.4 222.2 224.5 226.4] (default)|vector}

Standard mass flow, \(\dot{m}_{a i r, s t d}\), in \(\mathrm{g} / \mathrm{s}\).

\section*{EGR valve standard mass flow rate, f_egr_stdflow - Table} array

The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio
\[
\dot{m}_{E G R, s t d}=f_{E G R, s t d}\left(E G R a p, \frac{P_{o u t, E G R}}{P_{\text {in }, E G R}}\right)
\]
where:
- \(\dot{m}_{E G R, s t d}\) is EGR valve standard mass flow, dimensionless.
- EGRap is EGR valve flow area percent, in percent.
- \(\frac{P_{\text {out, EGR }}}{P_{\text {in, EGR }}}\) is the pressure ratio, dimensionless.

EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt Breakpoints
vector
EGR valve standard flow pressure ratio, \(\frac{P_{\text {out }, E G R}}{P_{\text {in, EGR }}}\), dimensionless.
EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt Breakpoints
[0;5;10;15;20;25;30;35;40;45;50;55;60;65;70;75;80;85;90;95;100] (default)|vector
EGR valve flow area percent, EGRap, in percent.

\section*{Torque}

\section*{Torque table, f_tq_nl - Lookup table}
[L x N] array
For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, \(T_{\text {brake }}=f_{T n L}(L, N)\), where:
- \(T_{\text {brake }}\) is engine brake torque after accounting for spark advance, AFR, and friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (\(\mathrm{L}-\mathrm{by}-\mathrm{N}\)) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.
```

Torque table load breakpoints, f_tq_nl_l_bpt - Breakpoints
[0.2 0.275 0.35 0.425 0.5 0.575 0. % 人5 0.7\overline{25}}
1.25](default)|vector|[1 x L] vector

```

Engine load breakpoints, L, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.
```

Torque table speed breakpoints, f_tq_nl_n_bpt - Breakpoints
[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571
2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286
3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000]
(default)|vector|[1 x N] vector

```

Engine speed breakpoints, \(N\), in rpm.
Dependencies
To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

\section*{Crank angle pressure and torque - Enable Crank angle signals off (default) | on}

If you select Crank angle pressure and torque on the block Torque tab, you can:
- Simulate advanced closed-loop engine controls in desktop simulations and on HIL bench, based on cylinder pressure recorded from a model or laboratory test as a function of crank angle.
- Simulate driveline vibrations downstream of the engine due to high-frequency crankshaft torsionals.
- Simulate engine misfires due to lean operation or spark plug fouling by using the injector pulse width input.
- Simulate cylinder deactivation effect (closed intake and exhaust valves, no injected fuel) on individual cylinder pressures, mean-value airflow, mean-value torque, and crank-angle-based torque.
- Simulate the fuel-cut effect on individual cylinder pressure, mean-value torque, and crank-anglebased torque.

\section*{Dependencies}

To enable this parameter, set Torque model to Torque Structure.
Cylinder pressure, f_crk_prs - Cylinder pressure table L x M x N array

Cylinder pressure table Prs, as a function of speed \(N\), load \(L\), and crank angle \(M\), in Pa.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select
Crank angle pressure and torque.
Brake torque, f_crk_btq - Brake torque table
L x M x N array
Brake torque table \(T_{\text {brake }}\), as a function of speed \(N\), load \(L\), and crank angle \(M\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Speed breakpoints, f_crk_n_bpt - Speed breakpoints
[750 5000] (default)| \(1 \times \mathrm{N}\) vector
Speed breakpoints, \(N\), in rpm.
Dependencies
To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Load breakpoints, f_crk_l_bpt - Load breakpoints
[0.2 1.4] (default) | \(1 \times \mathrm{L}\) vector
Load breakpoints, \(L\). No dimension.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Crank angle breakpoints, f_crk_ang_bpt - Crank angle breakpoints
[60 660] (default) | \(1 \times \mathrm{M}\) vector
Crank angle breakpoints, \(M\), in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

TDC compression angles by cylinder, f_crk_tdc_ang - TDC compression angles by cylinder
[0 540180 360] (default) | vector
Top dead center (TDC) compression angles by cylinder, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

\section*{Inner torque table, f_tq_inr - Lookup table array}

The inner torque lookup table, \(f_{\text {Tqinr }}\), is a function of engine speed and engine load, \(T q_{\text {inr }}=f_{\text {Tqinr }}(L, N)\), where:
- \(T q_{i n r}\) is inner torque based on gross indicated mean effective pressure, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Friction torque table, f_tq_fric - Lookup table \\ array}

The friction torque lookup table, \(f_{T f r i c}\), is a function of engine speed and engine load, \(T_{\text {fric }}=f_{\text {Tfric }}(L, N)\), where:
- \(T_{f r i c}\) is friction torque offset to inner torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Engine temperature modifier on friction torque, f_fric_temp_mod - Lookup table
[3.96 3.222 .562 .262 .1121 .91 .831 .761 .71 .651 .61 .551 .491 .441 .41
1.381 .351 .321 .31 .271 .251 .241 .211 .21 .181 .161 .151 .131 .121 .111 .1
1.091 .081 .071 .061 .051 .051 .041 .031 .021 .021 .011 .011110 .9990 .997
0.9950 .9930 .9910 .9890 .987 ] (default) | vector | vector

```

Engine temperature modifier on friction torque, \(f_{\text {fric,temp }}\), dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Engine temperature modifier breakpoints, f_fric_temp_bpt - Breakpoints
[274 276278280282284286288290292294296298300302304306308310
312314316318320322324326328330332334336338340342344346348
350352354356358360362364366368370372374376378 380] (default)|
vector | vector

```

Engine temperature modifier breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Pumping work table, f_tq_pump - Lookup table array}

The pumping work lookup table, \(f_{\text {Tpump }}\), is a function of engine load and engine speed, \(T_{\text {pump }}=\mathrm{f}_{\text {Tpump }}(\mathrm{L}, \mathrm{N})\), where:
- \(T_{p u m p}\) is pumping work, in N•m.
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Optimal spark table, f_sa_opt - Lookup table \\ array}

The optimal spark lookup table, \(f_{\text {SAopt }}\), is a function of engine speed and engine load, \(S A_{\text {opt }}=f_{S A o p t}(L, N)\), where:
- \(S A_{\text {opt }}\) is optimal spark advance timing for maximum inner torque at stoichiometric air-fuel ratio (AFR), in deg.
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Inner torque load breakpoints, f_tq_inr_l_bpt - Breakpoints}
\([0.20 .285710 .371430 .457140 .5 \overline{4} 28 \overline{6} 0 . \overline{6} 2 \overline{8} 570.714290 .80 .885710 .97143\)
1.05711 .14291 .22861 .31431 .4] (default) | vector

Inner torque load breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Inner torque speed breakpoints, f_tq_inr_n_bpt - Breakpoints
[750 1053.5714 1357.1429 1660.714\overline{3}1964.\overline{2857 2267.8571 2571.4286 2875}
3178.5714 3482.1429 3785.7143 4089.2857 4392.8571 4696.4286 5000] (default)|
vector

```

Inner torque speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Spark efficiency table, f_m_sa - Lookup table
array

```

The spark efficiency lookup table, \(f_{M s a}\), is a function of the spark retard from optimal
\[
\begin{aligned}
& M_{s a}=f_{M s a}(\Delta S A) \\
& \Delta S A=S A_{o p t}-S A
\end{aligned}
\]
where:
- \(M_{s a}\) is the spark retard efficiency multiplier, dimensionless.
- \(\Delta\) SAis the spark retard timing distance from optimal spark advance, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Spark retard from optimal, f_del_sa_bpt - Breakpoints}

13.514 .251515 .7516 .517 .251818 .7519 .520 .252121 .7522 .523 .2524
24.7525 .526 .252727 .7528 .529 .253030 .7531 .532 .253333 .7534 .535 .25
3636.7537 .538 .253939 .7540 .541 .254242 .7543 .544 .254545 .7546 .5
47.25 48] (default)|vector

Spark retard from optimal inner torque timing breakpoints, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Lambda efficiency, f_m_lam - Lookup table
array

```

The lambda efficiency lookup table, \(f_{M \lambda}\), is a function of lambda, \(M_{\lambda}=f_{M \lambda}(\lambda)\), where:
- \(M_{\lambda}\) is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- \(\lambda\) is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Lambda breakpoints, f_m_lam_bpt - Breakpoints}

\author{
[0.65 0.7 \(0.750 .80 .85-0.90 .9511 .051 .1]\) (default)|vector
}

Lambda effect on inner torque lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Exhaust}

\section*{Exhaust temperature table, f_t_exh - Lookup table}
array
The exhaust temperature lookup table, \(f_{\text {Texh }}\), is a function of engine load and engine speed
\[
T_{\text {exh }}=f_{\text {Texh }}(L, N)
\]
where:
- \(T_{\text {exh }}\) is engine exhaust temperature, in K.
- \(L\) is normalized cylinder air mass or engine load, dimensionless.
- \(N\) is engine speed, in rpm.

Load breakpoints, f_t_exh_l_bpt - Breakpoints
\([0.20 .2750 .350 .4 \overline{2} 50.50 .5750 .650 .7250 .80 .8750 .951 .0251 .11 .175\)
1.25] (default) | vector

Engine load breakpoints used for exhaust temperature lookup table.
Speed breakpoints, f_t_exh_n_bpt - Breakpoints
[750 1054 1357 1661 19 \(\overline{6} 42 \overline{2} 6 \overline{8} 25712875317934823786408943934696\) 5000] (default) | vector

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

\section*{References}
[1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems - BOSCH ME7. SAE Technical Paper 980801, 1998.
[2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[3] Leone, T. Christenson, E., Stein, R., Comparison of Variable Camshaft Timing Strategies at Part Load. SAE Technical Paper 960584, 1996, doi:10.4271/960584.
[4] Liu, F. and Pfeiffer, J., Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines. SAE Int. J. Engines 8(4):2015, doi:10.4271/2015-01-1620.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

SI Core Engine | Mapped SI Engine

\section*{Topics}
"Engine Calibration Maps"

\section*{External Websites}

Developing a Period-Based Air-Fuel Ratio Controller Using a Low-Cost Switching Sensor
Introduced in R2017a

\section*{SI Core Engine}

Spark-ignition engine from intake to exhaust port
Library:

\author{
Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine
}

\section*{Description}

The SI Core Engine block implements a spark-ignition (SI) engine from intake to exhaust port. You can use the block in larger vehicle models, hardware-in-the-loop (HIL) engine control design, or vehicle-level fuel economy and performance simulations.

The SI Core Engine block calculates:
- Brake torque
- Fuel flow
- Port gas mass flow, including exhaust gas recirculation (EGR)
- Air-fuel ratio (AFR)
- Exhaust temperature and exhaust mass flow rate
- Engine-out (EO) exhaust emissions
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

\section*{Air Mass Flow}

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|l|l|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air Mass & \begin{tabular}{l}
Uses the speed-density equation to calculate the engine air \\
mass flow, relating the engine air mass flow to the intake \\
manifold pressure and engine speed. Consider using this air \\
mass flow model in engines with fixed valvetrain designs.
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

To calculate the engine air mass flow, the dual-independent cam phaser model uses:
- Empirical calibration parameters developed from engine mapping measurements
- Desktop calibration parameters derived from engine computer-aided design (CAD) data

In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers:
- Elimination of MAF sensors in dual cam-phased valvetrain applications
- Reasonable accuracy with changes in altitude
- Semiphysical modeling approach
- Bounded behavior
- Suitable execution time for electronic control unit (ECU) implementation
- Systematic development of a relatively small number of calibration parameters

\section*{Brake Torque}

To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "SI Engine Torque Structure Model" & \begin{tabular}{l}
For the structured brake torque calculation, the SI engine \\
uses tables for the inner torque, friction torque, optimal \\
spark, spark efficiency, and lambda efficiency.
\end{tabular} \\
& \begin{tabular}{l}
If you select Crank angle pressure and torque on the \\
block Torque tab, you can:
\end{tabular} \\
& \begin{tabular}{l}
- Simulate advanced closed-loop engine controls in \\
desktop simulations and on HIL bench, based on \\
cylinder pressure recorded from a model or laboratory \\
test as a function of crank angle. \\
Simulate driveline vibrations downstream of the engine \\
due to high-frequency crankshaft torsionals.
\end{tabular} \\
& \begin{tabular}{l}
Simulate engine misfires due to lean operation or spark \\
plug fouling by using the injector pulse width input. \\
Simulate cylinder deactivation effect (closed intake and \\
exhaust valves, no injected fuel) on individual cylinder \\
pressures, mean-value airflow, mean-value torque, and \\
crank-angle-based torque.
\end{tabular} \\
& \begin{tabular}{l}
Simulate the fuel-cut effect on individual cylinder \\
pressure, mean-value torque, and crank-angle-based \\
torque.
\end{tabular} \\
\hline "SI Engine Simple Torque Model" & \begin{tabular}{l}
For the simple brake torque calculation, the SI engine block \\
uses a torque lookup table map that is a function of engine \\
speed and load.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fuel Flow}

To calculate the fuel flow, the SI Core Engine block uses fuel injector characteristics and fuel injector pulse-width.
\[
\dot{m}_{\text {fuel }}=\frac{N S_{i n j} P w_{i n j} N_{c y l}}{\operatorname{Cps}\left(\frac{60 s}{\min }\right)\left(\frac{1000 \mathrm{mg}}{g}\right)}
\]

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{f u e l}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{100 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{f u e l}}
\]

The equation uses these variables.
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow, \(\mathrm{g} / \mathrm{s}\)
\(\omega \quad\) Engine rotational speed, rad/s
Cps Crankshaft revolutions per power stroke, rev/stroke
\(S_{\text {inj }} \quad\) Fuel injector slope, \(\mathrm{mg} / \mathrm{ms}\)
\(P w_{i n j} \quad\) Fuel injector pulse-width, ms
\(N_{c y l} \quad\) Number of engine cylinders
\(N \quad\) Engine speed, rpm
\(S g_{\text {fuel }} \quad\) Specific gravity of fuel
\(Q_{\text {fuel }} \quad\) Volumetric fuel flow
The block uses the internal signal FlwDir to track the direction of the flow.

\section*{Air-Fuel Ratio}

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.
\[
A F R=\frac{\dot{m}_{a i r}}{\dot{m}_{f u e l}}
\]

The CI Core Engine uses this equation to calculate the relative AFR.
\[
\lambda=\frac{A F R}{A F R_{S}}
\]

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.
\[
E G R_{p c t}=100 \frac{\dot{m}_{i n t k, b}}{\dot{m}_{i n t k}}=100 y_{i n t k, b}
\]

The equations use these variables.
\begin{tabular}{ll}
\(A F R\) & Air-fuel ratio \\
\(A F R_{s}\) & Stoichiometric air-fuel ratio \\
\(\dot{m}_{\text {intk }}\) & Engine air mass flow \\
\(\dot{m}_{\text {fuel }}\) & Fuel mass flow \\
\(\lambda\) & Relative AFR \\
\(y_{\text {intk,b }}\) & Intake burned mass fraction \\
\(E G R_{p c t}\) & EGR percent \\
\(\dot{m}_{\text {intk,b }}\) & Recirculated burned gas mass flow rate
\end{tabular}

\section*{Exhaust}

The block calculates the:
- Exhaust gas temperature
- Exhaust gas-specific enthalpy
- Exhaust gas mass flow rate
- Engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.
\[
h_{e x h}=C p_{e x h} T_{e x h}
\]

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.
\[
\dot{m}_{e x h}=\dot{m}_{\text {intake }}+\dot{m}_{f u e l}
\]

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.
\[
\begin{aligned}
& y_{e x h, i}=f_{i _f r a c}\left(T_{\text {brake }}, N\right) \\
& \dot{m}_{e x h, i}=\dot{m}_{\text {exh }} y_{\text {exh }, i}
\end{aligned}
\]

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.
\[
y_{\text {exh, air }}=\max \left[y_{\text {in, air }}-\frac{\dot{m}_{\text {fuel }}+y_{\text {in, fuel }} \dot{m}_{\text {intake }}}{\dot{m}_{\text {fuel }}+\dot{m}_{\text {intake }}} A F R_{S}\right]
\]

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.
\[
y_{e x h, b}=\max \left[\left(1-y_{e x h, a i r}-y_{e x h, H C}\right), 0\right]
\]

The equations use these variables.
\(T_{\text {exh }} \quad\) Engine exhaust temperature
\(h_{\text {exh }} \quad\) Exhaust manifold inlet-specific enthalpy
\(C p_{e x h} \quad\) Exhaust gas specific heat
\(\dot{m}_{\text {intk }} \quad\) Intake port air mass flow rate
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow rate
\(\dot{m}_{\text {exh }} \quad\) Exhaust mass flow rate
\(y_{i n, \text { fuel }}\) Intake fuel mass fraction
\(y_{\text {exh, } i} \quad\) Exhaust mass fraction for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM
\(\dot{m}_{\text {exh, } i}\) Exhaust mass flow rate for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM
\(T_{\text {brake }} \quad\) Engine brake torque
\(N \quad\) Engine speed
\(y_{\text {exh,air }}\) Exhaust air mass fraction
\(y_{\text {exh,b }} \quad\) Exhaust air burned mass fraction

\section*{Power Accounting}

For the power accounting, the block implements equations that depend on Torque model.
When you set Torque model to Simple Torque Lookup, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{6}{*}{PwrInfo} & \multirow[t]{6}{*}{\begin{tabular}{|l|l}
PwrTrnsfrd \\
- Power \\
transferred \\
between \\
blocks
\end{tabular}} & PwrIntk HeatFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & & PwrExhH eatFlw & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline & & PwrCrks
\[
\mathrm{hft}
\] & Crankshaft power & \(-T_{\text {brake }} \omega\) \\
\hline & & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrLoss & All losses & \(T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V-\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline & \begin{tabular}{ll}
PwrStored \\
- Stored \\
energy rate of \\
change \\
& \\
& Not used \\
Positive \\
signals \\
indicate an \\
increase \\
- & \\
Negative \\
signals \\
indicate a \\
decrease
\end{tabular} & & \\
\hline
\end{tabular}

When you set Torque model to Torque Structure, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{7}{*}{PwrInfo} & \multirow[t]{7}{*}{\begin{tabular}{|l|}
\hline PwrTrnsfrd \\
- Power \\
transferred \\
between \\
blocks \\
- \\
Positive \\
signals \\
indicate \\
flow into \\
block \\
- \(\quad\) Negative \\
signals \\
indicate \\
flow out of \\
block \\
\hline PwrNotTrns \\
frd - Power \\
crossing the \\
block \\
boundary, but \\
not \\
transferred \\
- Positive \\
signals \\
indicate an \\
input \\
- Negative \\
signals \\
indicate a \\
loss \\
\hline
\end{tabular}} & PwrIntk HeatFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & & PwrExhH eatFlw & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline & & PwrCrks
hft & Crankshaft power & \(-T_{\text {brake }} \omega\) \\
\hline & & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrFric Loss & Friction loss & \(-T_{\text {fric }} \omega\) \\
\hline & & PwrPump Loss & Pumping loss & \(-T_{\text {pump }} \omega\) \\
\hline & & \begin{tabular}{l}
PwrHeat \\
TrnsfrL oss
\end{tabular} & Heat transfer loss & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V-\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }} \\
& +T_{\text {fric }} \omega+T_{\text {pump }} \omega
\end{aligned}
\] \\
\hline
\end{tabular}

\(h_{\text {exh }} \quad\) Exhaust manifold inlet-specific enthalpy
\(h_{\text {intk }} \quad\) Intake port specific enthalpy
\(\dot{m}_{\text {intk }} \quad\) Intake port air mass flow rate
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow rate
\(\dot{m}_{e x h} \quad\) Exhaust mass flow rate
\(\omega \quad\) Engine speed
\(T_{\text {brake }} \quad\) Brake torque
\(T_{\text {pump }} \quad\) Engine pumping work offset to inner torque
\(T_{\text {fric }} \quad\) Engine friction torque
LHV Fuel lower heating value

\section*{Ports}

Input
InjPw - Fuel injector pulse-width
scalar
Fuel injector pulse-width, \(P w_{i n j}\), in ms.
SpkAdv - Spark advance
scalar
Spark advance, \(S A\), in degrees crank angle before top dead center (degBTDC).

\section*{Dependencies}

To create this port, for the Torque model parameter, select Torque Structure.

\section*{ICP - Intake cam phase angle command scalar}

Intake cam phase angle command, \(\varphi_{\text {ICPCMD }}\), in degCrkAdv, or degrees crank advance.

\section*{Dependencies}

To create this port, for the Air mass flow model parameter, select Dual-Independent Variable Cam Phasing.

\section*{ECP - Exhaust cam phase angle command} scalar

Exhaust cam phase angle command, \(\varphi_{E C P C M D}\), in degCrkRet, or degrees crank retard.

\section*{Dependencies}

To create this port, for the Air mass flow model parameter, select Dual-Independent Variable Cam Phasing.

AmbPrs - Ambient pressure scalar

Ambient pressure, \(P_{A m b}\), in Pa.

\section*{Dependencies}

To create this port, for the Air mass flow model parameter, select Dual-Independent Variable Cam Phasing.

\section*{EngSpd - Engine speed}
scalar
Engine speed, \(N\), in rpm.

\section*{Ect - Engine cooling temperature}
scalar
Engine cooling temperature, \(T_{\text {coolant }}\), in K .

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intk - Intake port pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing the upstream:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Intake port mass fractions, dimensionless. EGR mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the exhaust:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Output}

Info - Bus signal
bus
Bus signal that contains these block calculations.
\begin{tabular}{|c|c|c|c|}
\hline Signal & Description & Variable & Units \\
\hline IntkGasMassFlw & Engine intake air mass flow & \(\dot{m}_{\text {air }}\) & kg/s \\
\hline IntkAirMassFlw & Engine intake port mass flow & \(\dot{m}_{\text {int }}\) & kg/s \\
\hline NrmlzdAirChrg & Engine load (that is, normalized cylinder air mass) corrected for final steady-state cam phase angles & \(L\) & N/A \\
\hline Afr & Air-fuel ratio at engine exhaust port & AFR & N/A \\
\hline FuelMassFlw & Fuel flow into engine & \(\dot{m}_{\text {fuel }}\) & kg/s \\
\hline FuelVolFlw & Volumetric fuel flow & \(Q_{\text {fuel }}\) & \(\mathrm{m}^{3} / \mathrm{s}\) \\
\hline ExhManGasTemp & Exhaust gas temperature at exhaust manifold inlet & \(T_{\text {exh }}\) & K \\
\hline EngTrq & Engine brake torque & \(T_{\text {brake }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EngSpd & Engine speed & \(N\) & rpm \\
\hline IntkCamPhase & Intake cam phaser angle & \(\varphi_{I C P} \mathrm{i}\) & degrees crank advance \\
\hline ExhCamPhase & Exhaust cam phaser angle & \(\varphi_{E C P}\) & degrees crank retard \\
\hline CrkAng & Engine crankshaft absolute angle & \begin{tabular}{l}
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where Cps is crankshaft revolutions per power stroke
\end{tabular} & degrees crank angle \\
\hline EgrPct & EGR percent & \(E G R_{\text {pct }}\) & N/A \\
\hline EoAir & EO air mass flow rate & \(\dot{m}_{\text {exh }}\) & kg/s \\
\hline EoBrndGas & EO burned gas mass flow rate & \(y_{\text {exh, }}\) & kg/s \\
\hline EoHC & EO hydrocarbon emission mass flow rate & \(y_{\text {exh,HC }}\) & kg/s \\
\hline EoCO & EO carbon monoxide emission mass flow rate & \(y_{\text {exh,co }}\) & kg/s \\
\hline EoN0x & EO nitric oxide and nitrogen dioxide emissions mass flow rate & \(y_{\text {exh,NOx }}\) & kg/s \\
\hline EoC02 & EO carbon dioxide emission mass flow rate & \(y_{\text {exh, } \mathrm{Coz}}\) & kg/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{EoPm} & EO particulate matter emission mass flow rate & \(y_{\text {exh,PM }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{CylPrs} & Cylinder pressure & N/A & Pa \\
\hline \multicolumn{3}{|l|}{EngTrqCrk} & Crank-angle based engine torque & N/A & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multirow[t]{9}{*}{PwrIn fo} & \multirow[t]{3}{*}{PwrTrns frd} & PwrIntkHea tFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) & W \\
\hline & & PwrExhHeat Flw & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) & W \\
\hline & & PwrCrkshft & Crankshaft power & - \(T_{\text {brake }} \omega\) & W \\
\hline & \multirow[t]{5}{*}{PwrNotT rnsfrd} & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) & W \\
\hline & & PwrLoss & \begin{tabular}{l}
For Torque model set to Simple Torque Lookup: \\
All losses
\end{tabular} & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V \\
& -\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }}
\end{aligned}
\] & W \\
\hline & & \begin{tabular}{l}
PwrFricLos \\
s
\end{tabular} & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Friction loss
\end{tabular} & \(-T_{\text {fric }} \omega\) & W \\
\hline & & PwrPumpLos s & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Pumping loss
\end{tabular} & \(-T_{\text {pump }} \omega\) & W \\
\hline & & PwrHeatTrn sfrLoss & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Heat transfer loss
\end{tabular} & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V \\
& -\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }} \\
& +T_{\text {fric }} \omega+T_{\text {pump }} \omega
\end{aligned}
\] & W \\
\hline & PwrStor ed & \multicolumn{4}{|l|}{Not used} \\
\hline
\end{tabular}

\section*{EngTrq - Engine brake torque scalar}

Engine brake torque, \(T_{\text {brake }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Intk - Intake port mass flow rate, heat flow rate, temperature, mass fraction}
two-way connector port
Bus containing:
- MassFlwRate - Intake port mass flow rate, in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Intake port heat flow rate, in J/s
- Temp - Intake port temperature, in K
- MassFrac - Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port mass flow rate, heat flow rate, temperature, mass fraction}
two-way connector port
Bus containing:
- MassFlwRate - Exhaust port mass flow rate, in kg/s
- HeatFlwRate - Exhaust heat flow rate, in J/s
- Temp - Exhaust temperature, in K
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

Air mass flow model - Select air mass flow model
Dual-Independent Variable Cam Phasing (default)|Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|l|l|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air Mass & \begin{tabular}{l}
Uses the speed-density equation to calculate the engine air \\
mass flow, relating the engine air mass flow to the intake \\
manifold pressure and engine speed. Consider using this air \\
mass flow model in engines with fixed valvetrain designs.
\end{tabular} \\
\hline "SI Engine Dual-Independent Cam & \begin{tabular}{l}
To calculate the engine air mass flow, the dual-independent \\
cam phaser model uses:
\end{tabular} \\
Phaser Air Mass Flow Model" & - \begin{tabular}{l}
Empirical calibration parameters developed from engine \\
mapping measurements
\end{tabular} \\
& - \begin{tabular}{l}
Desktop calibration parameters derived from engine \\
computer-aided design (CAD) data
\end{tabular} \\
& \begin{tabular}{l}
In contrast to typical embedded air mass flow calculations \\
based on direct air mass flow measurement with an air \\
mass flow (MAF) sensor, this air mass flow model offers:
\end{tabular} \\
& - \begin{tabular}{l}
Elimination of MAF sensors in dual cam-phased \\
valvetrain applications
\end{tabular} \\
& - Reasonable accuracy with changes in altitude \\
& - \begin{tabular}{l}
Semiphysical modeling approach
\end{tabular} \\
& - \begin{tabular}{l}
Bounded behavior \\
Suitable execution time for electronic control unit (ECU) \\
implementation
\end{tabular} \\
& - \begin{tabular}{l}
Systematic development of a relatively small number of \\
calibration parameters
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

The table summarizes the parameter dependencies.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Air Mass Flow \\
Model
\end{tabular} & Enables Parameters \\
\hline \begin{tabular}{l}
Dual- \\
Independent \\
Variable Cam \\
Phasing
\end{tabular} & Cylinder volume at intake valve close table, f_vivc \\
& Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt \\
Cylinder trapped mass correction factor, f_tm_corr \\
Normalized density breakpoints, f_tm_corr_nd_bpt \\
& Engine speed breakpoints, f_tm_corr_n_bpt \\
& Air mass flow, f_mdot_air \\
& Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt \\
& \begin{tabular}{l}
Trapped mass flow breakpoints, f_mdot_trpd_bpt \\
Air mass flow correction factor, f_mdot_air_corr
\end{tabular} \\
& \begin{tabular}{l}
Engine load breakpoints for air mass flow correction, \\
f_mdot_air_corr_ld_bpt
\end{tabular} \\
& Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
\end{tabular}\(|\)\begin{tabular}{ll}
Speed-density volumetric efficiency, f_nv \\
Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt \\
Speed-density engine speed breakpoints, f_nv_n_bpt \\
\hline Simple Speed \\
\hline
\end{tabular}

\section*{Torque model - Select torque model}

Torque Structure (default) | Simple Torque Lookup
To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "SI Engine Torque Structure Model" & \begin{tabular}{l}
For the structured brake torque calculation, the SI engine \\
uses tables for the inner torque, friction torque, optimal \\
spark, spark efficiency, and lambda efficiency.
\end{tabular} \\
& \begin{tabular}{l}
If you select Crank angle pressure and torque on the \\
block Torque tab, you can:
\end{tabular} \\
& \begin{tabular}{l}
- Simulate advanced closed-loop engine controls in \\
desktop simulations and on HIL bench, based on \\
cylinder pressure recorded from a model or laboratory \\
test as a function of crank angle.
\end{tabular} \\
& \begin{tabular}{l}
- Simulate driveline vibrations downstream of the engine \\
due to high-frequency crankshaft torsionals. \\
Simulate engine misfires due to lean operation or spark \\
plug fouling by using the injector pulse width input.
\end{tabular} \\
& \begin{tabular}{l}
- Simulate cylinder deactivation effect (closed intake and \\
exhaust valves, no injected fuel) on individual cylinder \\
pressures, mean-value airflow, mean-value torque, and \\
crank-angle-based torque.
\end{tabular} \\
\hline - Simulate the fuel-cut effect on individual cylinder \\
pressure, mean-value torque, and crank-angle-based \\
torque.
\end{tabular}

\section*{Dependencies}

The table summarizes the parameter dependencies.
\begin{tabular}{|l|l|}
\hline Torque Model & Enables Parameters \\
\hline Torque Structure & Inner torque table, f_tq_inr \\
& Friction torque table, f_tq_fric \\
& Engine temperature modifier on friction torque, f_fric_temp_mod \\
& Engine temperature modifier breakpoints, f_fric_temp_bpt \\
& Pumping work table, f_tq_pump \\
& Optimal spark table, f_sa_opt \\
& Inner torque load breakpoints, f_tq_inr_l_bpt \\
& Inner torque speed breakpoints, f_tq_inr_n_bpt \\
& Spark efficiency table, f_m_sa \\
& Spark retard from optimal, f_del_sa_bpt \\
& Lambda efficiency, f_m_lam \\
& Lambda breakpoints, f_m_lam_bpt \\
\hline Simple Torque Lookup & Torque table, f_tq_nl \\
& Torque table load breakpoints, f_tq_nl_1_bpt \\
& Torque table speed breakpoints, f_tq_nl_n_bpt \\
\hline
\end{tabular}

Air
Number of cylinders, NCyl - Engine cylinders
4 (default) | scalar
Number of engine cylinders, \(N_{\text {cyl }}\) -
Crank revolutions per power stroke, Cps - Revolutions per stroke 2 (default) | scalar

Crankshaft revolutions per power stroke, Cps, in rev/stroke.
Total displaced volume, Vd - Volume
0.0015 (default) | scalar

Displaced volume, \(V_{d}\), in \(\mathrm{m}^{\wedge} 3\).
Ideal gas constant air, Rair - Constant
287 (default) | scalar
Ideal gas constant, \(R_{\text {air }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure 101325 (default) | scalar

Standard air pressure, \(P_{s t d}\), in Pa .

\section*{Air standard temperature, Tstd - Temperature \\ 293.15 (default) | scalar}

Standard air temperature, \(T_{s t d}\), in \(K\).

\section*{Speed-density volumetric efficiency, f_nv - Lookup table array}

The engine volumetric efficiency lookup table, \(f_{\eta_{v^{\prime}}}\), is a function of intake manifold absolute pressure and engine speed
\[
\eta_{v}=f_{\eta_{v}}(M A P, N)
\]
where:
- \(\eta_{v}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

\section*{Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt - Breakpoints}
[31 40.6428571428571 50.2857142857143 59.9285714285714 69.5714285714286
79.214285714285788 .857142857142998 .5108 .142857142857117 .785714285714
127.428571428571137 .071428571429146 .714285714286156 .357142857143166] (default) | array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.
```

Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints
[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571
2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286
3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000]
(default)| array

```

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

\section*{Cylinder volume at intake valve close table, f_vivc - 2-D lookup table array}

The cylinder volume at intake valve close table (IVC), \(f_{V i v c}\) is a function of the intake cam phaser angle
\[
V_{I V C}=f_{V i v C}\left(\varphi_{I C P}\right)
\]
where:
- \(V_{I V C}\) is cylinder volume at IVC, in L.
- \(\varphi_{I C P}\) is intake cam phaser angle, in crank advance degrees.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt - Breakpoints [0 2.63165 .26327 .894710 .526313 .157915 .789518 .421121 .052623 .6842 26.315828 .947431 .578934 .210536 .842139 .473742 .105344 .736847 .3684 50] (default) | vector

Cylinder volume intake cam phase breakpoints, in L.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual-Independent Variable Cam Phasing.

Cylinder trapped mass correction factor, f_tm_corr - Lookup table array

The trapped mass correction factor table, \(f_{T M c o r r}\), is a function of the normalized density and engine speed
\[
T M_{\text {corr }}=f_{T M c o r r}\left(\rho_{\text {norm }}, \quad N\right)
\]
where:
- \(T M_{\text {corr }}\), is trapped mass correction multiplier, dimensionless.
- \(\rho_{\text {norm }}\) is normalized density, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt - Breakpoints
[0.3 0.38947 0.47895 0.56842 0.65789 0.74737-0.83684 0.92632 1.0158 1.1053
1.19471 .28421 .37371 .46321 .55261 .64211 .73161 .82111 .9105 2] (default)|
vector
Normalized density breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.
```

Engine speed breakpoints, f_tm_corr_n_bpt - Breakpoints
[750 973.6842 1197.3684 1421.0526 1644.7368 1868.4211 2092.1053 2315.7895
2539.4737 2763.1579 2986.8421 3210.5263 3434.2105 3657.8947 3881.5789
4105.2632 4328.9474 4552.6316 4776.3158 5000] (default)|vector

```

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

\section*{Intake mass flow, f_mdot_intk - Lookup table}
array
The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow
\[
\dot{m}_{\text {intkideal }}=f_{\text {intkideal }}\left(\varphi_{E C P}, T M_{\text {flow }}\right)
\]
where:
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
- \(\varphi_{E C P}\) is exhaust cam phaser angle, in degrees crank retard.
- \(T M_{\text {flow }}\) is flow rate equivalent to corrected trapped mass at the current engine speed, in \(\mathrm{g} / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

\section*{Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt - Breakpoints}

26.315828 .947431 .578934 .210536 .842139 .473742 .105344 .736847 .3684 50]
(default) | vector
Exhaust cam phaser breakpoints for air mass flow lookup table, in degrees crank retard.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

Trapped mass flow breakpoints, f_mdot_trpd_bpt - Breakpoints
[0 5.7895 11.5789 17.3684 23.1579 \(28 . \overline{9} 474 \overline{3} 4.736840 .526346 .315852 .1053\)
57.894763 .684269 .473775 .263281 .052686 .842192 .631698 .4211 104.2105 110] (default) | vector

Trapped mass flow breakpoints for air mass flow lookup table, in g/s.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.
```

Air mass flow correction factor, f_mdot_air_corr - Lookup table array

```

The intake air mass flow correction lookup table, \(f_{\text {aircorr }}\), is a function of ideal load and engine speed
\[
\dot{m}_{\text {air }}=\dot{m}_{\text {intkideal }} f_{\text {aircorr }}\left(L_{\text {ideal }}, N\right)
\]
where:
- \(L_{\text {ideal }}\) is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.
- \(\dot{m}_{\text {air }}\) is engine intake air mass flow final correction at steady-state cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

\section*{Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt - Breakpoints \\ vector}

Engine load breakpoints for air mass flow final correction, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

\section*{Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt Breakpoints}
vector
Engine speed breakpoints for air mass flow final correction, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

\section*{Torque}

\section*{Torque table, f_tq_nl - Lookup table}
[L x N] array
For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, \(T_{\text {brake }}=f_{T n L}(L, N)\), where:
- \(T_{\text {brake }}\) is engine brake torque after accounting for spark advance, AFR, and friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.

The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (\(\mathrm{L}-\mathrm{by}-\mathrm{N}\)) contains the non-firing data in the first table row (\(1-b y-\mathrm{N}\)). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.
Torque table load breakpoints, f_tq_nl_l_bpt - Breakpoints
[0.2 \(0.2750 .350 .4250 .50 .575 \overline{0} .650 .7 \overline{2} 50.80 .8750 .951 .0251 .11 .175\)
1.25] (default)|vector|[1 x L] vector

Engine load breakpoints, L, dimensionless.
Dependencies
To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.
Torque table speed breakpoints, f_tq_nl_n_bpt - Breakpoints
[750 1053.57142857143 1357.14285714286 1660.71428571429 1964.28571428571
2267.857142857142571 .4285714285728753178 .571428571433482 .14285714286
3785.714285714294089 .285714285714392 .857142857144696 .42857142857 5000]
(default)|vector|[1 x N] vector
Engine speed breakpoints, \(N\), in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

\section*{Crank angle pressure and torque - Enable Crank angle signals off (default) | on}

If you select Crank angle pressure and torque on the block Torque tab, you can:
- Simulate advanced closed-loop engine controls in desktop simulations and on HIL bench, based on cylinder pressure recorded from a model or laboratory test as a function of crank angle.
- Simulate driveline vibrations downstream of the engine due to high-frequency crankshaft torsionals.
- Simulate engine misfires due to lean operation or spark plug fouling by using the injector pulse width input.
- Simulate cylinder deactivation effect (closed intake and exhaust valves, no injected fuel) on individual cylinder pressures, mean-value airflow, mean-value torque, and crank-angle-based torque.
- Simulate the fuel-cut effect on individual cylinder pressure, mean-value torque, and crank-anglebased torque.

\section*{Dependencies}

To enable this parameter, set Torque model to Torque Structure.
Cylinder pressure, f_crk_prs - Cylinder pressure table
L x M x Narray
Cylinder pressure table Prs, as a function of speed \(N\), load \(L\), and crank angle \(M\), in Pa.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Brake torque, f_crk_btq - Brake torque table
L x M x N array
Brake torque table \(T_{\text {brake }}\), as a function of speed \(N\), load \(L\), and crank angle \(M\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Speed breakpoints, f_crk_n_bpt - Speed breakpoints
[750 5000] (default)| \(1 \times \mathrm{N}\) vector
Speed breakpoints, \(N\), in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Load breakpoints, f_crk_l_bpt - Load breakpoints
[0.2 1.4] (default) | \(1 \times \mathrm{L}\) vector
Load breakpoints, \(L\). No dimension.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Crank angle breakpoints, f_crk_ang_bpt - Crank angle breakpoints
[60 660] (default)| 1 x M vector
Crank angle breakpoints, \(M\), in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

TDC compression angles by cylinder, f_crk_tdc_ang - TDC compression angles by cylinder
[0 540180 360] (default) | vector
Top dead center (TDC) compression angles by cylinder, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure. Select Crank angle pressure and torque.

Inner torque table, f_tq_inr - Lookup table
array
The inner torque lookup table, \(f_{\text {Tqinr }}\), is a function of engine speed and engine load, \(T q_{i n r}=f_{T q i n r}(L, N)\), where:
- \(T q_{i n r}\) is inner torque based on gross indicated mean effective pressure, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Friction torque table, f_tq_fric - Lookup table array}

The friction torque lookup table, \(f_{\text {Tfric }}\), is a function of engine speed and engine load, \(T_{\text {fric }}=f_{\text {Tfric }}(L, N)\), where:
- \(T_{f r i c}\) is friction torque offset to inner torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
Engine temperature modifier on friction torque, f_fric_temp_mod - Lookup table
 1.381 .351 .321 .31 .271 .251 .241 .211 .21 .181 .161 .151 .131 .121 .111 .1
```

1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.03 1.02 1.02 1.01 1.01 1 1 1 0.999 0.997
0.995 0.993 0.991 0.989 0.987] (default)|vector|vector

```

Engine temperature modifier on friction torque, \(f_{\text {fric, temp }}\), dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Engine temperature modifier breakpoints, f_fric_temp_bpt - Breakpoints
[274 276 278 280 282 284 286 288 290 292 2944 296 298-300 302 304 306 308 310
312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348
350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380] (default)|
vector| vector

```

Engine temperature modifier breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Pumping work table, f_tq_pump - Lookup table
array

```

The pumping work lookup table, \(f_{\text {Tpump }}\), is a function of engine load and engine speed, \(T_{\text {pump }}=\mathrm{f}_{\text {Tpump }}(\mathrm{L}, \mathrm{N})\), where:
- \(T_{p u m p}\) is pumping work, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Optimal spark table, f_sa_opt - Lookup table \\ array}

The optimal spark lookup table, \(f_{\text {SAopt }}\), is a function of engine speed and engine load, \(S A_{\text {opt }}=f_{S A o p t}(L, N)\), where:
- \(S A_{\text {opt }}\) is optimal spark advance timing for maximum inner torque at stoichiometric air-fuel ratio (AFR), in deg.
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Inner torque load breakpoints, f_tq_inr_l_bpt - Breakpoints

```

1.05711 .14291 .22861 .31431 .4] (default) | vector

Inner torque load breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Inner torque speed breakpoints, f_tq_inr_n_bpt - Breakpoints
[750 1053.5714 1357.1429 1660.7143 1964.2857 2267.8571 2571.4286 2875
3178.5714 3482.1429 3785.7143 4089.2857 4392.8571 4696.4286 5000] (default)|
vector

```

Inner torque speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Spark efficiency table, f_m_sa - Lookup table
array

```

The spark efficiency lookup table, \(f_{M s a}\), is a function of the spark retard from optimal
\[
\begin{aligned}
& M_{s a}=f_{M s a}(\Delta S A) \\
& \Delta S A=S A_{\text {opt }}-S A
\end{aligned}
\]
where:
- \(M_{s a}\) is the spark retard efficiency multiplier, dimensionless.
- \(\Delta\) SAis the spark retard timing distance from optimal spark advance, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Spark retard from optimal, f_del_sa_bpt - Breakpoints
[0 0.75 1.5 2.25 3 3.75 4.5 5. 25 6 6.75 7.5 8.25 9 9.75 10.5 11.25 12 12.75
13.5 14.25 15 15.75 16.5 17.25 18 18.75 19.5 20.25 21 21.75 22.5 23.25 24
24.75 25.5 26.25 27 27.75 28.5 29.25 30 30.75 31.5 32.25 33 33.75 34.5 35.25
36 36.75 37.5 38.25 39 39.75 40.5 41.25 42 42.75 43.5 44.25 45 45.75 46.5
47.25 48] (default)|vector

```

Spark retard from optimal inner torque timing breakpoints, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Lambda efficiency, f_m_lam - Lookup table array}

The lambda efficiency lookup table, \(f_{M \lambda}\), is a function of lambda, \(M_{\lambda}=f_{M \lambda}(\lambda)\), where:
- \(M_{\lambda}\) is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- \(\lambda\) is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Lambda breakpoints, f_m_lam_bpt - Breakpoints}

\author{
[0.65 0.7 \(0.750 .80 .85-0.90 .9511 .051 .1]\) (default)|vector
}

Lambda effect on inner torque lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Exhaust}

\section*{Exhaust temperature table, f_t_exh - Lookup table}
array
The exhaust temperature lookup table, \(f_{\text {Texh }}\), is a function of engine load and engine speed
\[
T_{\text {exh }}=f_{\text {Texh }}(L, N)
\]
where:
- \(T_{\text {exh }}\) is engine exhaust temperature, in K.
- \(L\) is normalized cylinder air mass or engine load, dimensionless.
- \(N\) is engine speed, in rpm.

Load breakpoints, f_t_exh_l_bpt - Breakpoints
[0.2 0. \(2750.350 .4 \overline{2} 50.50 .5750 .650 .7250 .80 .8750 .951 .0251 .11 .175\)
1.25] (default) | vector

Engine load breakpoints used for exhaust temperature lookup table, dimensionless.
Speed breakpoints, f_t_exh_n_bpt - Breakpoints
[750 1053.5714285714 \(\overline{3} \overline{1} 357.1 \overline{4} 2857142861660.714285714291964 .28571428571\)
2267.857142857142571 .4285714285728753178 .571428571433482 .14285714286
3785.714285714294089 .285714285714392 .857142857144696 .42857142857 5000]
(default) | vector
Engine speed breakpoints used for exhaust temperature lookup table, in rpm.
Exhaust gas specific heat at constant pressure, cp_exh - Specific heat 1005 (default) | scalar

Exhaust gas-specific heat, \(C p_{\text {exh }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
```

CO2 mass fraction table, f_CO2_frac - Carbon dioxide (CO2) emission lookup table array

```

The SI Core Engine \(\mathrm{CO}_{2}\) emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:
- CO2 Mass Fraction is the \(\mathrm{CO}_{2}\) emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2.

\section*{CO mass fraction table, f_CO_frac - Carbon monoxide (CO) emission lookup table array}

The SI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:
- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO.

\section*{HC mass fraction table, f_HC_frac - Hydrocarbon (HC) emission lookup table array}

The SI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:
- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select HC.

\section*{NOx mass fraction table, f_NOx_frac - Nitric oxide and nitrogen dioxide (NOx) emission lookup table}
array
The SI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction \(=f\) (Speed, Torque), where:
- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select NOx.

\section*{PM mass fraction table, f_PM_frac - Particulate matter (PM) emission lookup table array}

The SI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:
- \(P M\) is the PM emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select PM.

\section*{Engine speed breakpoints, f_exhfrac_n_bpt - Breakpoints}
```

[750 1053.57142857143 1357.\overline{1}42857142\mp@code{产 1660.71428571429 1964.28571428571}
2267.85714285714 2571.42857142857 2875 3178.57142857143 3482.14285714286
3785.71428571429 4089.28571428571 4392.85714285714 4696.42857142857 5000]
(default)| vector

```

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
```

Engine torque breakpoints, f_exhfrac_trq_bpt - Breakpoints
[0 15 26.4285714285714 37.8571428571429 49.2857142857143 60.7142857142857
72.1428571428571 83.5714285714286 95 106.428571428571 117.857142857143
129.285714285714 140.714285714286 152.142857142857 163.571428571429 175]
(default)| vector

```

Engine torque breakpoints used for the emission mass fractions lookup tables, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

\section*{Fuel}

Injector slope, Sinj - Slope
6.45161290322581 (default) | scalar

Fuel injector slope, \(S_{i n j}, \mathrm{mg} / \mathrm{ms}\).

\section*{Stoichiometric air-fuel ratio, afr_stoich - Air-fuel ratio}
14.6 (default) | scalar

Air-fuel ratio, \(A F R\).

\section*{Fuel lower heating value, fuel_lhv - Heating value \\ 46e6 (default) | scalar}

Fuel lower heating value, \(L H V\), in \(\mathrm{J} / \mathrm{kg}\).
Fuel specific gravity, fuel_sg - Specific gravity 0.745 (default) | scalar

Specific gravity of fuel, \(S g_{f u e l}\), dimensionless.

\section*{References}
[1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems - BOSCH ME7. SAE Technical Paper 980801, 1998.
[2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

SI Controller | Mapped SI Engine

\section*{Topics}
"SI Core Engine Air Mass Flow and Torque Production"
"Engine Calibration Maps"

Introduced in R2017a

\section*{Turbine}

Turbine for boosted engines

\section*{Description}

The Turbine block uses the conservation of mass and energy to calculate mass and heat flow rates for turbines with either fixed or variable geometry. You can configure the block with a wastegate valve to bypass the turbine. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. You can specify the lookup tables to calculate the mass flow rate and turbine efficiency. Typically, turbine manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to outlet control volume.

The Turbine block implements equations to model the performance, wastegate flow, and combined flow.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

\begin{tabular}{|c|c|c|c|}
\hline Task & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.} \\
\hline \multirow[t]{10}{*}{Generate response models} & \multicolumn{3}{|l|}{Model-Based Calibration Toolbox fits the imported data and generates response models.} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Turbine type \\
Fixed geometry
\end{tabular}} & \multicolumn{2}{|l|}{Description} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multirow[t]{4}{*}{Variable geometry} & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox uses a point-by-point test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multicolumn{3}{|l|}{To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).} \\
\hline \multirow[t]{5}{*}{Generate calibration} & \multicolumn{3}{|l|}{Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables.} \\
\hline & Turbine type & \multicolumn{2}{|l|}{Description} \\
\hline & Fixed geometry & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.} \\
\hline & Variable geometry & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox fills the corrected mass flow rate and efficiency tables for each rack position. Model-Based Calibration Toolbox then combines the rack position-dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.} \\
\hline & \multicolumn{3}{|l|}{To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Update block parameters & \multicolumn{2}{|l|}{Update these corrected mass flow rate and efficiency parameters with the calibration.} \\
\hline & Turbine type & Parameters \\
\hline & Fixed geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrfx_tbl \\
- Efficiency table, eta_turbfx_tbl \\
- Corrected speed breakpoints, w_corrfx_bpts1 \\
- Pressure ratio breakpoints, Pr_fx_bpts2
\end{tabular} \\
\hline & Variable geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrvr_tbl \\
- Efficiency table, eta_turbvr_tbl \\
- Corrected speed breakpoints, w_corrvr_bpts2 \\
- Pressure ratio breakpoints, Pr_vr_bpts2 \\
- Rack breakpoints, L_rack_bpts3
\end{tabular} \\
\hline
\end{tabular}

\section*{Thermodynamics}

The block uses these equations to model the thermodynamics.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Forward mass flow & \(\dot{m}_{\text {turb }}>0\) \\
& \(p_{01}=p_{\text {inlet }}\) \\
\(p_{02}=p_{\text {outlet }}\) \\
& \(T_{01}=T_{\text {inlet }}\) \\
& \(h_{01}=h_{\text {inlet }}\) \\
\hline First law of thermodynamics & \(\dot{W}_{\text {turb }}=\dot{m}_{\text {turb }} c_{p}\left(T_{01}-T_{02}\right)\) \\
\hline Isentropic efficiency & \(\eta_{\text {turb }}=\frac{h_{01}-h_{02}}{h_{01}-h_{02 \mathrm{~s}}}=\frac{T_{01}-T_{02}}{T_{01}-T_{02 \mathrm{~s}}}\) \\
\hline \begin{tabular}{l}
Isentropic outlet temperature, \\
assuming ideal gas, and constant \\
specific heats
\end{tabular} & \(T_{02 s}=T_{01}\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}\) \\
\hline Specific heat ratio & \(\gamma=\frac{c_{p}}{c_{p}-R}\) \\
\hline Outlet temperature & \(T_{02}=T_{01}+\eta_{t u r b} T_{01}\left\{1-\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}\right\}\) \\
\hline Heat flows & \(q_{\text {in, turb }}=\dot{m}_{\text {turb }} c_{p} T_{01}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Drive shaft torque & \(\tau_{t u r b}=\frac{\dot{W}_{t u r b}}{\omega}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(p_{\text {inlet }}, p_{01}\) & Inlet control volume total pressure \\
\(T_{\text {inlet }}, T_{01}\) & Inlet control volume total temperature \\
\(h_{\text {inlet }}, h_{01}\) & Inlet control volume total specific enthalpy \\
\(p_{\text {outlet }}, p_{02}\) & Outlet control volume total pressure \\
\(T_{\text {outlet }}\) & Outlet control volume total temperature \\
\(h_{\text {outlet }}\) & Outlet control volume total specific enthalpy \\
\(\dot{W}_{\text {turb }}\) & Drive shaft power \\
\(T_{02}\) & Temperature exiting the turbine \\
\(h_{02}\) & Outlet total specific enthalpy \\
\(\dot{m}_{t u r b}\) & Turbine mass flow rate \\
\(q_{\text {in, turb }}\) & Turbine inlet heat flow rate \\
\(q_{\text {out }, \text { turb }}\) & Turbine outlet heat flow rate \\
\(\eta_{t u r b}\) & Turbine isentropic efficiency \\
\(T_{02 s}\) & Isentropic outlet total temperature \\
\(h_{02 s}\) & Isentropic outlet total specific enthalpy \\
\(R\) & Ideal gas constant \\
\(c_{p}\) & Specific heat at constant pressure \\
\(\gamma\) & Specific heat ratio \\
\(\tau_{t u r b}\) & Drive shaft torque
\end{tabular}

\section*{Performance Lookup Tables}

The block implements lookup tables based on these equations.
\begin{tabular}{|c|c|c|}
\hline Calculation & \multicolumn{2}{|l|}{Equation} \\
\hline Corrected mass flow rate & \multicolumn{2}{|l|}{\[
\dot{m}_{c o r r}=\dot{m}_{t u r b} \frac{\sqrt{T_{01} / T_{r e f}}}{p_{01} / p_{r e f}}
\]} \\
\hline Corrected speed & \multicolumn{2}{|l|}{\[
\omega_{\text {corr }}=\frac{\omega}{\sqrt{T_{01} / T_{r e f}}}
\]} \\
\hline Pressure expansion ratio & \multicolumn{2}{|l|}{\(p_{r}=\frac{p_{01}}{p_{02}}\)} \\
\hline \multirow[t]{2}{*}{Efficiency lookup table} & Fixed geometry (3-D table) & \(\eta_{\text {turbfx }, \text { tbl }}=f\left(\omega_{\text {corr }}, p_{r}\right)\) \\
\hline & Variable geometry (3-D table) & \(\eta_{\text {turbur }, \text { tbl }}=f\left(\omega_{\text {corr }}, p_{r}, L_{\text {rack }}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Calculation & Equation & \(\dot{m}_{\text {corrfx }, t b l}=f\left(\omega_{\text {corr }}, p_{r}\right)\) \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Corrected mass flow \\
lookup table
\end{tabular}} & Fixed geometry (3-D table) & \(\dot{m}_{\text {corrvr }, \text { tbl }}=f\left(\omega_{\text {corr }}, p_{r}, L_{\text {rack }}\right)\) \\
\cline { 2 - 3 } & Variable geometry (3-D table) & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(p_{01}\) & Inlet control volume total pressure \\
\(p_{r}\) & Pressure expansion ratio \\
\(p_{02}\) & Outlet control volume total pressure \\
\(P_{r e f}\) & Lookup table reference pressure \\
\(T_{01}\) & Inlet control volume total temperature \\
\(T_{r e f}\) & Lookup table reference temperature \\
\(\dot{m}_{t u r b}\) & Turbine mass flow rate \\
\(\omega\) & Drive shaft speed \\
\(\omega_{\text {corr }}\) & Corrected drive shaft speed \\
\(L_{r a c k}\) & Variable geometry turbine rack position \\
\(\eta_{\text {turbfx }, t b l}\) & Efficiency 3-D lookup table for fixed geometry \\
\(\dot{m}_{\text {corrfx }, t b l}\) & Corrected mass flow rate 3-D lookup table for fixed geometry \\
\(\eta_{t u r b v r, t b l}\) & Efficiency 3-D lookup table for variable geometry \\
\(\dot{m}_{\text {corrvr, tbl }}\) & Corrected mass flow rate 3-D lookup table for variable geometry \\
Wastegate &
\end{tabular}

To calculate the wastegate heat and mass flow rates, the Turbine block uses a Flow Restriction block. The Flow Restriction block uses the wastegate flow area.
\[
A_{w g}=A_{\text {wgpctcmd }} \frac{A_{\text {wgopen }}}{100}
\]

The equation uses these variables.
\(A_{\text {wgpctcmd }} \quad\) Wastegate valve area percent command
\(A_{w g} \quad\) Wastegate valve area
\(A_{\text {wgopen }} \quad\) Wastegate valve area when fully open

\section*{Combined Flow}

To represent flow through the wastegate valve and turbine, the block uses these equations.
\begin{tabular}{|ll|}
\hline Calculation & Equations \\
\begin{tabular}{ll}
Blocks not configured with \\
a wastegate valve
\end{tabular} & \(\dot{m}_{w g}=q_{w g}=0\) \\
Total mass flow rate & \(\dot{m}_{t o t a l}=\dot{m}_{t u r b}+\dot{m}_{w g}\)
\end{tabular}
\begin{tabular}{|ll|}
\hline Calculation & Equations \\
& \(q_{\text {inlet }}=q_{\text {in, turb }}+q_{w g}\) \\
Total heat flow rate & \(q_{\text {outlet }}=q_{\text {out }, \text { turb }}+q_{w g}\) \\
\begin{tabular}{l}
Combined temperature \\
exiting the wastegate valve \\
and turbine
\end{tabular} & \(T_{\text {outflw }}=\left\{\begin{array}{cc}\frac{q_{\text {outlet }}}{\dot{m}_{\text {total } p}} & \dot{m}_{\text {total }}>\dot{m}_{\text {thresh }} \\
\frac{T_{02}+T_{\text {outflw,wg }}}{2} & \text { else } \\
\hline\end{array}\right.\) \\
\hline
\end{tabular}

The block uses the internal signal FlwDir to track the direction of the flow.
The equations use these variables.
\begin{tabular}{ll}
\(\dot{m}_{\text {total }}\) & Total mass flow rate through the wastegate valve and turbine \\
\(\dot{m}_{\text {turb }}\) & Turbine mass flow rate \\
\(\dot{m}_{\text {wg }}\) & Mass flow rate through the wastegate valve \\
\(q_{\text {inlet }}\) & Total inlet heat flow rate \\
\(q_{\text {outlet }}\) & Total outlet heat flow rate \\
\(q_{\text {in, turb }}\) & Turbine inlet heat flow rate \\
\(q_{\text {out, turb }}\) & Turbine outlet heat flow rate \\
\(q_{\text {wg }}\) & Wastegate valve heat flow rate \\
\(T_{02}\) & Temperature exiting the turbine \\
\(T_{\text {outflw }}\) & Total temperature exiting the block \\
\(T_{\text {outflw, wg }}\) & Temperature exiting the wastegate valve \\
\(\dot{m}_{\text {thresh }}\) & Mass flow rate threshold to prevent dividing by zero \\
\(c_{p}\) & Specific heat at constant pressure
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline \begin{tabular}{l}
PwrInf \\
o
\end{tabular} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred \\
between blocks
\end{tabular} & PwrDriveshft & \begin{tabular}{l}
Power \\
transmitted from \\
the shaft
\end{tabular} & \(-\dot{W}_{\text {turb }}\) \\
\begin{tabular}{ll}
Positive signals indicate flow into \\
block \\
Negative signals indicate flow out \\
of block
\end{tabular} & PwrHeatFlwIn & \begin{tabular}{l}
Heat flow rate at \\
port A
\end{tabular} & \(q_{\text {outlet }}\) \\
\cline { 3 - 5 } & PwrHeatFlw0ut & \begin{tabular}{l}
Heat flow rate at \\
port B
\end{tabular} & \(q_{\text {outlet }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Equations \\
\hline \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Power loss & \begin{tabular}{l}
- \(q_{\text {inlet }}\) \\
- qoutlet
\[
+\dot{W}_{t u r b}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\dot{W}_{\text {turb }}\) & Drive shaft power \\
\(q_{\text {outlet }}\) & Total outlet heat flow rate \\
\(q_{\text {inlet }}\) & Total inlet heat flow rate
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Ds - Drive shaft speed}
two-way connector port
ShaftSpd - Signal containing the drive shaft angular speed, \(\omega\), in rad/s.
A - Inlet pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing the inlet control volume:
- InPrs - Pressure, \(p_{\text {inlet }}\), in Pa
- InTemp - Temperature, \(T_{\text {inlet }}\), in K
- InEnth - Specific enthalpy, \(h_{\text {inlet }}\), in J/kg

B - Outlet pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing the outlet control volume:
- OutPrs - Pressure, \(p_{\text {outlet }}\), in Pa
- OutTemp - Temperature, \(T_{\text {outlet }}\), in K
- OutEnth - Specific enthalpy, \(h_{\text {outlet }}\), in J/kg

\section*{RackPos - Rack position}

\section*{scalar}

Variable geometry turbine rack position, \(L_{\text {rack }}\).

\section*{Dependencies}

To create this port, select Variable geometry for the Turbine type parameter.

\section*{WgAreaPct - Wastegate area percent}
scalar
Wastegate valve area percent, \(A_{\text {wgpctcmd }}\).

\section*{Dependencies}

To create this port, select Include wastegate.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multicolumn{3}{|l|}{TurbOutletTemp} & Temperature exiting the turbine & K \\
\hline \multicolumn{3}{|l|}{DriveshftPwr} & Drive shaft power & W \\
\hline \multicolumn{3}{|l|}{DriveshftTrq} & Drive shaft torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multicolumn{3}{|l|}{TurbMassFlw} & Turbine mass flow rate & kg/s \\
\hline \multicolumn{3}{|l|}{PrsRatio} & Pressure ratio & N/A \\
\hline \multicolumn{3}{|l|}{DriveshftCorrSpd} & Corrected drive shaft speed & rad/s \\
\hline \multicolumn{3}{|l|}{Turbeff} & Turbine isentropic efficiency & N/A \\
\hline \multicolumn{3}{|l|}{CorrMassFlw} & Corrected mass flow rate & kg/s \\
\hline \multicolumn{3}{|l|}{WgArea} & Wastegate valve area & m^2 \\
\hline \multicolumn{3}{|l|}{WgMassFlw} & Mass flow rate through the wastegate valve & kg/s \\
\hline \multicolumn{3}{|l|}{WgOut letTemp} & Temperature exiting the wastegate valve & K \\
\hline \multirow[t]{5}{*}{PwrInfo} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfr \\
d
\end{tabular}} & PwrDriveshf t & Power transmitted from the shaft & W \\
\hline & & \[
\begin{aligned}
& \text { PwrHeatFlwI } \\
& \mathrm{n}
\end{aligned}
\] & Heat flow rate at port A & W \\
\hline & & PwrHeatFlw0 ut & Heat flow rate at port B & W \\
\hline & PwrNotTrn sfrd & PwrLoss & Power loss & W \\
\hline & PwrStored & & Not used & \\
\hline
\end{tabular}

\section*{Ds - Drive shaft torque}

\footnotetext{
two-way connector port
}

Trq - Signal containing the drive shaft torque, \(\tau_{\text {turb }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
A - Inlet mass flow rate, heat flow rate, temperature, mass fractions
two-way connector port
Bus containing:
- MassFlwRate - Total mass flow rate through wastegate valve and turbine, \(-\dot{m}_{\text {total }}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Total inlet heat flow rate, \(-q_{\text {inlet }}\), in J/s
- Temp - Total inlet temperature, \(T_{\text {inlet }}\), in K
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet mass flow rate, heat flow rate, temperature, mass fractions
two-way connector port
Bus containing:
- MassFlwRate - Turbine mass flow rate through wastegate valve and turbine, \(\dot{m}_{\text {turb }}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Total outlet heat flow rate, \(q_{\text {outlet, }}\) in J/s
- Temp - Total outlet temperature, \(T_{\text {outflw }}\), in K
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- CO2MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Turbine type - Select turbine type}

Fixed geometry (default)|Variable geometry
Turbine type.
Dependencies
The table summarizes the parameter and port dependencies.
\begin{tabular}{|l|l|l|}
\hline Value & Enables Parameters & Creates Ports \\
\hline Fixed geometry & \begin{tabular}{l}
Corrected mass flow rate table, \\
mdot_corrfx_tbl \\
Efficiency table, eta_turbfx_tbl \\
Corrected speed breakpoints, \\
w_corrfx_bpts1
\end{tabular} & None \\
Pressure ratio breakpoints, Pr_fx_bpts2
\end{tabular}\(\quad\) RP \(\quad\)\begin{tabular}{|l|l}
Variable geometry & \begin{tabular}{l}
Corrected mass flow rate table, \\
mdot_corrvr_tbl \\
Efficiency table, eta_turbvr_tbl \\
Corrected speed breakpoints, \\
w_corrv_bpts2 \\
Pressure ratio breakpoints, Pr_vr_bpts2 \\
Rack breakpoints, L_rack_bpts3
\end{tabular} \\
\hline
\end{tabular}

\section*{Include wastegate - Select}
on (default) | off

\section*{Dependencies}

Selecting the Include wastegate parameter enables:
- Wastegate flow area, A_wgopen
- Pressure ratio linearize limit, Plim_wg

\section*{Performance Tables \\ Calibrate Performance Maps - Calibrate tables with measured data}
selection
If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.

\begin{tabular}{|c|c|c|c|}
\hline Task & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.} \\
\hline \multirow[t]{10}{*}{Generate response models} & \multicolumn{3}{|l|}{Model-Based Calibration Toolbox fits the imported data and generates response models.} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Turbine type \\
Fixed geometry
\end{tabular}} & \multicolumn{2}{|l|}{Description} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multirow[t]{4}{*}{Variable geometry} & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox uses a point-by-point test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multicolumn{3}{|l|}{To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).} \\
\hline \multirow[t]{5}{*}{Generate calibration} & \multicolumn{3}{|l|}{Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables.} \\
\hline & Turbine type & \multicolumn{2}{|l|}{Description} \\
\hline & Fixed geometry & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox uses the response models for the corrected mass flow rate and efficiency tables.} \\
\hline & Variable geometry & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox fills the corrected mass flow rate and efficiency tables for each rack position. Model-Based Calibration Toolbox then combines the rack position-dependent tables into 3D lookup tables for corrected mass flow rate and efficiency.} \\
\hline & \multicolumn{3}{|l|}{To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Update block parameters & \multicolumn{2}{|l|}{Update these corrected mass flow rate and efficiency parameters with the calibration.} \\
\hline & Turbine type & Parameters \\
\hline & Fixed geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrfx_tbl \\
- Efficiency table, eta_turbfx_tbl \\
- Corrected speed breakpoints, w_corrfx_bpts1 \\
- Pressure ratio breakpoints, Pr_fx_bpts2
\end{tabular} \\
\hline & Variable geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrvr_tbl \\
- Efficiency table, eta_turbvr_tbl \\
- Corrected speed breakpoints, w_corrvr_bpts2 \\
- Pressure ratio breakpoints, Pr_vr_bpts2 \\
- Rack breakpoints, L_rack_bpts3
\end{tabular} \\
\hline
\end{tabular}

\section*{Corrected mass flow rate table, mdot_corrfx_tbl - Lookup table array}

Corrected mass flow rate lookup table for fixed geometry, \(\dot{m}_{\text {corrfx }, t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\), and pressure ratio, \(p_{r}\), in \(\mathrm{kg} / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.
Efficiency table, eta_turbfx_tb - Lookup table
array
Efficiency lookup table for fixed geometry, \(\eta_{t u r b f x, t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr, }}\), and pressure ratio, \(p_{r}\), dimensionless.

\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.

\section*{Corrected speed breakpoints, w_corrfx_bpts1 - Fixed geometry}
[0 \(1552310446576209776193 \overline{1} 31.087 \mathrm{e}+041.242 \mathrm{e}+041.397 \mathrm{e}+04\)] (default)|vector
Corrected drive shaft speed breakpoints for fixed geometry, \(\omega_{\text {corrfx, } b p t s 1}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.

\section*{Pressure ratio breakpoints, Pr_fx_bpts2 - Fixed geometry}
\(\left[\begin{array}{llllll}1 & 1.333 & 1.667 & 2 & 2.333 & 2.667 \\ 3 & 3 . & 333 & 3.667 & 4\end{array}\right]\) (default)|vector
Pressure ratio breakpoints for fixed geometry, \(p_{r f x}, b p t s 2\).

\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.
Corrected mass flow rate table, mdot_corrvr_tbl - Lookup table array

Corrected mass flow rate lookup table for variable geometry, \(\dot{m}_{\text {corrvr, }}\) tbl, as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\), and pressure ratio, \(p_{r}\), in kg/s.

\section*{Dependencies}

To enable this parameter, select Variable geomet ry for the Turbine type parameter.
```

Efficiency table, eta_turbvr_tbl - Lookup table

```
array
Efficiency lookup table for variable geometry, \(\eta_{t u r b v r, ~ t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\), and pressure ratio, \(p_{r}\), dimensionless.

\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.

\section*{Corrected speed breakpoints, w_corrvr_bpts2 - Variable geometry}
[0 \(175235045257700987611.051 e+041.227 e+041.402 e+041.577 e+04]\) (default)| vector

Corrected drive shaft speed breakpoints for variable geometry, \(\omega_{\text {corrvr, bpts1 }}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.
```

Pressure ratio breakpoints, Pr_vr_bpts2 - Variable geometry
[1 1. 306 1.611 1.917 2.222 2.5立8 2. . %33 3.139 3.444 3.75] (default)|vector

```

Pressure ratio breakpoints for variable geometry.

\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.
```

Rack breakpoints, L_rack_bpts3 - Variable geometry

```
[0 0.2 0.3 0.5 0.7 \(\overline{1}\)] (default) | vector

Rack position breakpoints for variable geometry, \(L_{\text {rack, bpts3 }}\).

\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.

\section*{Reference temperature, T_ref - Temperature}
293.15 (default) | scalar

Performance map reference temperature, \(T_{r e f}\), in K .
Reference pressure, P_ref - Pressure
101325 (default) | scalar
Performance map reference pressure, \(P_{\text {ref }}\), in Pa.
Wastegate
Wastegate flow area, A_wgopen - Area
0.0003 (default) | scalar

Area of fully opened wastegate valve, \(A_{\text {wgopen }}\), in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable Wastegate flow area, A_wgopen, select the Include wastegate parameter.
Pressure ratio linearize limit, Plim_wg - Area, m^2
0.95 (default) | scalar

\section*{Dependencies}

Flow restriction linearization limit, \(p_{\text {lim, wg }}\).

\section*{Properties}

Ideal gas constant, R-Constant
287 (default) | scalar
Ideal gas constant \(R\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Specific heat at constant pressure, cp - Specific heat 1005 (default) | scalar}

Specific heat at constant pressure, \(c_{p}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[2] Eriksson, Lars and Lars Nielsen. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Compressor | Boost Drive Shaft
Topics
"Model-Based Calibration Toolbox"

Introduced in R2017a

\section*{Mapped Core Engine}

Steady-state core engine model using lookup tables

\section*{Description}

The Mapped Core Engine block implements a steady-state core engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:
- Hardware-in-the-loop (HIL) engine control design.
- Vehicle-level fuel economy and performance simulations.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables are functions of engine load, \(L\), and engine speed \(N\). If you select Input engine temperature, the tables are also a function of engine temperature, \(T\).
- Power
- Air
- Fuel
- Temperature
- Efficiency
- Emissions
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM) emissions

To bound the Mapped Core Engine block output, the block does not extrapolate the lookup table data.

\section*{Ports}

Input
<TrqCmd> - Engine load
TrqCmd (default)
Engine load, \(L\). Examples of engine load include:
- Commanded torque
- Commanded indicated mean effective pressure (IMEP) in the engine cylinder
- Normalized cylinder air mass
- Injected fuel mass

\section*{Dependencies}

To specify an engine load port name, on the Configuration tab, enter a name in the Load input port name parameter field.
<EngSpd> - Engine speed
EngSpd (default)
Engine speed, \(N\).
Dependencies
To specify an engine load port name, on the Configuration tab, enter a name in the Speed input port name parameter field.

\section*{<EngTemp> - Engine temperature}

EngTemp (default)
Engine temperature, T.

\section*{Dependencies}

To create the engine temperature input port name, select Input engine temperature parameter field.

To specify an engine load port name, on the Configuration tab, enter a name in the Temperature input port name parameter field.

\section*{Output}
<EngTrq> - Power
EngTrq (default)
Engine power, \(T_{\text {brake }}\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select Power.
- To specify the port name, on the Power tab, enter a name in the Power output port name parameter field.

\section*{<IntkAirMassFlw> - Air mass flow \\ IntkAirMassFlw (default)}

Engine air mass flow, \(\dot{m}_{i n t k}\).
Dependencies
- To create this port, on the Configuration tab, select Air.
- To specify the port name, on the Air tab, enter a name in the Air output port name parameter field.
<FuelMassFlw> - Fuel flow
FuelMassFlw (default)
Engine fuel flow, \(\dot{m}_{\text {fuel }}\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select Fuel.
- To specify the port name, on the Fuel tab, enter a name in the Fuel output port name parameter field.
```

<ExhManGasTemp> - Exhaust temperature
ExhManGasTemp (default)

```

Engine exhaust temperature, \(T_{\text {exh }}\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select Temperature.
- To specify the port name, on the Temperature tab, enter a name in the Temperature output port name parameter field.
```

<Bsfc> - Efficiency

```

\section*{Bsfc (default)}

Brake-specific fuel consumption (BSFC), Eff.

\section*{Dependencies}
- To create this port, on the Configuration tab, select Efficiency.
- To specify the port name, on the Efficiency tab, enter a name in the Efficiency output port name parameter field.

\section*{<EOHC> - Hydrocarbon emissions}

\section*{EoHC (default)}

Hydrocarbon emissions, HC.

\section*{Dependencies}
- To create this port, on the Configuration tab, select HC.
- To specify the port name, on the HC tab, enter a name in the HC output port name parameter field.

\section*{<EOCO> - Carbon monoxide emissions}

EoCO (default)
Carbon monoxide emissions, CO.

\section*{Dependencies}
- To create this port, on the Configuration tab, select CO.
- To specify the port name, on the \(\mathbf{C O}\) tab, enter a name in the \(\mathbf{C O}\) output port name parameter field.

\section*{<EONOx> - Nitric oxide and nitrogen dioxide emissions \\ EoNOx (default)}

Nitric oxide and nitrogen dioxide emissions, NOx.

\section*{Dependencies}
- To create this port, on the Configuration tab, select NOx.
- To specify the port name, on the NOx tab, enter a name in the NOx output port name parameter field.

\section*{<EoCO2> - Carbon dioxide emissions}

EoC02 (default)
Carbon dioxide emissions, CO 2 .

\section*{Dependencies}
- To create this port, on the Configuration tab, select CO2.
- To specify the port name, on the CO2 tab, enter a name in the CO2 output port name parameter field.

\section*{<EoPm> - Particulate matter emissions}

EoPm (default)
Particulate matter emissions, \(P M\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select PM.
- To specify the port name, on the \(\mathbf{P M}\) tab, enter a name in the \(\mathbf{P M}\) output port name parameter field.

\section*{Parameters}

\section*{Configuration}

\section*{Engine Type - Type of engine image}

Compression-ignition (CI) (default)|Spark-ignition (SI)
Type of mapped internal combustion engine image to use in the block.
```

Load input port name - Name
TrqCmd (default)

```

Engine load input port name.

\section*{Breakpoints for load input - Breakpoints} vector

Breakpoints for engine load input.

Speed input port name - Name
EngSpd (default)
Speed input port name.
Breakpoints for speed input - Breakpoints vector

Breakpoints for engine speed input.

\section*{Temperature input port name - Name \\ EngTemp (default)}

Temperature input port name.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Breakpoints for temperature input - Breakpoints}
[233.15 273.15 373.15] (default) | vector
Breakpoints for engine temperature input.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.
Output Configuration - Create output ports
on (default)
Create the output ports.

\section*{Dependencies}

The table summarizes the output ports that are created for each Output parameter selection.
\begin{tabular}{|l|l|l|}
\hline Output Selection & Creates Port & Creates Tab \\
\hline Power & EngTrq & Power \\
\hline Air & IntkAirMassFlw & Air \\
\hline Fuel & FuelMassFlw & Fuel \\
\hline Temperature & ExhManGasTemp & Temperature \\
\hline Efficiency & Bsfc & Efficiency \\
\hline HC & EoHC & HC \\
\hline CO & EoCO & CO \\
\hline NOx & EoNOx & NOx \\
\hline CO2 & EoC02 & CO2 \\
\hline PM & EoPm & PM \\
\hline
\end{tabular}

\section*{Power}

Power output port name - Power
EngTrq (default)

Power output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Power.
Power table - Power
array
Power table.
Dependencies
To create this parameter, on the Configuration tab, select Power.
Air
Air output port name - Air IntkAirMassFlw (default)

Air mass flow output port name.
Dependencies
To create this parameter, on the Configuration tab, select Air.
Air table - Air
array
Air mass flow table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Air.
Fuel
Fuel output port name - Fuel
FuelMassFlw (default)
Fuel output port name.
Dependencies
To create this parameter, on the Configuration tab, select Fuel.
Fuel table - Fuel
array
Fuel table.
Dependencies
To create this parameter, on the Configuration tab, select Fuel.

\section*{Temperature}

Temperature output port name - Temperature
ExhManGasTemp (default)

Temperature output port name.
Dependencies
To create this parameter, on the Configuration tab, select Temperature.
Temperature table - Temperature
array
Temperature table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Temperature.

\section*{Efficiency}

Efficiency output port name - Efficiency
Bsfc (default)
Efficiency output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Efficiency.
Efficiency table - Efficiency
array
Efficiency table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Efficiency.
HC
HC output port name - Hydrocarbon
EoHC (default)
Hydrocarbon output port name.
Dependencies
To create this parameter, on the Configuration tab, select HC.
HC table - Hydrocarbon
array
Hydrocarbon table.
Dependencies
To create this parameter, on the Configuration tab, select \(\mathbf{H C}\).
CO
CO output port name - Carbon dioxide
EoCO (default)

Carbon monoxide output port name.
Dependencies
To create this parameter, on the Configuration tab, select CO.
CO table - Carbon dioxide
array
Carbon dioxide table.
Dependencies
To create this parameter, on the Configuration tab, select CO.
NOx
NOx output port name - Nitric oxide \(\mathbf{N O}\) and nitrogen dioxide \(\mathbf{N O}_{\mathbf{2}}\) EoNOx (default)

NOx output port name. NOx is nitric oxide NO and nitrogen dioxide \(\mathrm{NO}_{2}\).

\section*{Dependencies}

To create this parameter, on the Configuration tab, select NOx.
NOx table - Nitric oxide \(\mathbf{N O}\) and nitrogen dioxide \(\mathbf{N O}_{\mathbf{2}}\) array

NOx emissions table. NOx is nitric oxide NO and nitrogen dioxide \(\mathrm{NO}_{2}\).

\section*{Dependencies}

To create this parameter, on the Configuration tab, select NOx.
```

CO2

```
CO2 output port name - Carbon dioxide
EoC02 (default)

Carbon dioxide output port name.
Dependencies
To create this parameter, on the Configuration tab, select CO2.
CO2 table - Carbon dioxide
array
Carbon dioxide table.
Dependencies
To create this parameter, on the Configuration tab, select CO2.
PM
PM output port name - Particulate matter
EoPm (default)

Particulate matter output port name.
Dependencies
To create this parameter, on the Configuration tab, select \(\mathbf{P M}\).
PM table - Particulate matter
array
Particulate matter table.
Dependencies
To create this parameter, on the Configuration tab, select PM.

\section*{Extended Capabilities}
\(\mathbf{C} / \mathbf{C + +}\) Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

CI Core Engine | SI Core Engine

Introduced in R2017a

\section*{Mapped CI Engine}

Compression-ignition engine model using lookup tables
Library: Powertrain Blockset / Propulsion / Combustion Engines Vehicle Dynamics Blockset / Powertrain / Propulsion

\section*{Description}

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:
- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, \(F\), engine torque, \(T\), engine speed, \(N\), and engine temperature, \(T e m p_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline Input Command Setting & \begin{tabular}{l}
Input Engine Temperature \\
Parameter Setting
\end{tabular} & Lookup Tables \\
\hline \multirow{3}{*}{ Fuel mass } & off & \(f(F, N)\) \\
\cline { 2 - 3 } & on & \(f\left(F, N, T e m p_{\text {Eng }}\right)\) \\
\hline \multirow{2}{*}{ Torque } & off & \(f(T, N)\) \\
\cline { 2 - 3 } & on & \(f\left(T, N, T e m p_{\text {Eng }}\right)\) \\
\hline
\end{tabular}

The block enables you to specify lookup tables for these engine characteristics:
- Power
- Air
- Fuel
- Temperature
- Efficiency
- Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions
- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\) emissions
- Particulate matter (PM) emissions

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|c|}
\hline Task & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import firing data} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/CiEngineData.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Input command & Required Data & Optional Data \\
\hline & Fuel mass & \begin{tabular}{l}
- Engine speed, rpm \\
- Commanded fuel mass per injection, mg \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\)
\end{tabular} & \begin{tabular}{l}
- Air mass flow rate, kg/s \\
- Brake specific fuel consumption, \(\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})\) \\
- CO2 mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & Torque & - Engine speed, rpm & \begin{tabular}{l}
- CO mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Exhaust temperature, K \\
- Fuel mass flow rate, kg/s \\
- HC mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- NOx mass flow rate, kg/s \\
- Particulate matter mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Import non-firing data & \multicolumn{3}{|l|}{\begin{tabular}{l}
Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/autoblks/autodemos/projectsrc/CIDynamometer/ CalMappedEng/CiEngineData.xlsx. \\
- Engine speed, rpm \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
\end{tabular}} \\
\hline Generate response models & \multicolumn{3}{|l|}{\begin{tabular}{l}
For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l}
Generate \\
calibration
\end{tabular} & \begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the firing and non-firing response \\
models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The Model- \\
Based Calibration Toolbox CAGE Browser opens. For more information, see \\
"Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l}
Update block \\
parameters
\end{tabular} & Update the block lookup table and breakpoint parameters with the calibration. \\
\hline
\end{tabular}

\section*{Cylinder Air Mass}

The block calculates the normalized cylinder air mass using these equations.
\[
\begin{aligned}
& M_{\text {Nom }}=\frac{P_{\text {std }} V_{d}}{N_{\text {cyl }} R_{\text {air }} T_{\text {std }}} \\
& L=\frac{\left(\frac{60 s}{m i n}\right) C p s \cdot \dot{m}_{\text {air }}}{\left(\frac{1000 g}{\mathrm{Kg}}\right) N_{\text {cyl }} \cdot N \cdot M_{\text {Nom }}}
\end{aligned}
\]

The equations use these variables.
\(L \quad\) Normalized cylinder air mass
\(M_{\text {Nom }} \quad\) Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps Crankshaft revolutions per power stroke, rev/stroke
\(P_{s t d} \quad\) Standard pressure
\(T_{\text {std }} \quad\) Standard temperature
\(R_{\text {air }} \quad\) Ideal gas constant for air and burned gas mixture
\(V_{d} \quad\) Displaced volume
\(N_{\text {cyl }} \quad\) Number of engine cylinders
\(N \quad\) Engine speed
\(\dot{m}_{\text {intk }} \quad\) Engine air mass flow, in \(\mathrm{g} / \mathrm{s}\)

\section*{Turbocharger Lag}

To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Calculation} & \multicolumn{2}{|l|}{Input command Parameter Setting} \\
\hline & Fuel mass & Torque \\
\hline Dynamic torque & \(\frac{d F_{\max }}{d t}=\frac{1}{\tau_{\text {eng }}}\left(F_{c m d}-F_{\text {max }}\right)\) & \(\frac{d T_{\max }}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {cmd }}-T_{\text {max }}\right)\) \\
\hline Fuel mass per injection or torque - with turbocharger lag & \[
\begin{aligned}
& F= \\
& \begin{cases}F_{c m d} & \text { when } F_{c m d}<F_{\max } \\
F_{\max } & \text { when } F_{c m d} \geq F_{\max }\end{cases}
\end{aligned}
\] & \[
\begin{aligned}
& T_{\text {target }}= \\
& \begin{cases}T_{c m d} & \text { when } T_{c m d}<T_{\max } \\
T_{\max } & \text { when } T_{c m d} \geq T_{\max }\end{cases}
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Fuel mass per injection } \\
\text { or torque- without } \\
\text { turbocharger lag }
\end{array} \\
\hline
\end{array}
\] & \(F=F_{\text {cmd }}=F_{\text {max }}\) & \(T_{\text {target }}=T_{\text {cmd }}=T_{\text {max }}\) \\
\hline Boost time constant & \[
\begin{aligned}
& \tau_{b s t}= \\
& \begin{cases}\tau_{\text {bst, } \text { rising }} & \text { when } F_{c m d}>F_{\max } \\
\tau_{b s t, \text { falling }} & \text { when } F_{c m d} \leq F_{\max }\end{cases}
\end{aligned}
\] & \[
\begin{aligned}
& \tau_{\text {bst }}= \\
& \begin{cases}\tau_{\text {bst }, \text { rising }} & \text { when } T_{c m d}>T_{\max } \\
\tau_{\text {bst }, \text { falling }} & \text { when } T_{c m d} \leq T_{\max }\end{cases}
\end{aligned}
\] \\
\hline Final time constant & \[
\tau_{\text {eng }}= \begin{cases}\tau_{\text {nat }} & \text { when } T_{\text {brake }}<f_{\text {bs }} \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{b s}\end{cases}
\] & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {brake }}\) & Brake torque \\
\(F\) & Fuel mass per injection \\
\(F_{\text {cmd }}, F_{\max }\) & Commanded and maximum fuel mass per injection, respectively \\
\(T_{\text {target }}, T_{\text {cmd }}, T_{\max }\) & Target, commanded, and maximum torque, respectively \\
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bst,rising, }}, \tau_{\text {bst,falling }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {eng }}\) & Final time constant \\
\(\tau_{\text {nat }}\) & Time constant below the boost torque speed line \\
\(f_{\text {bst }}(N)\) & Boost torque/speed line \\
\(N\) & Engine speed
\end{tabular}

\section*{Fuel Flow}

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{f u e l}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{100 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{\text {fuel }}}
\]

The equation uses these variables.
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow
\(S g_{\text {fuel }} \quad\) Specific gravity of fuel
\(Q_{\text {fuel }} \quad\) Volumetric fuel flow

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { PwrInf } \\
& 0
\end{aligned}
\]} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrCrkshft & Crankshaft power & \(-\tau_{\text {eng }} \omega\) \\
\hline & PwrNotTrnsfrd - Power crossing the block boundary, but not transferred & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L\) LHV \\
\hline & \begin{tabular}{l}
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Power loss & \[
\begin{aligned}
& \tau_{e n g} \omega \\
& -\dot{m}_{\text {fuel }} L H V
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & Not used & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
LHV & Fuel lower heating value \\
\(\omega\) & Engine speed, rad/s \\
\(\dot{m}_{\text {fuel }}\) & Fuel mass flow \\
\(\tau_{\text {eng }}\) & Fuel mass per injection time constant
\end{tabular}

\section*{Ports}

\section*{Input}

FuelMassCmd - Injected fuel mass command
scalar
Injected fuel mass command, \(F\), in mg/inj.

\section*{Dependencies}

To enable this port, for Input command, select Fuel mass.

\section*{TrqCmd - Torque command \\ scalar}

Torque command, \(T\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this port, for Input command, select Torque.

\section*{EngSpd - Engine speed \\ scalar}

Engine speed, \(N\), in rpm.

\section*{EngTemp - Engine temperature}
scalar
Engine temperature, \(\mathrm{Temp}_{\text {Eng }}\), in K .

\section*{Dependencies}

To enable this port, select Input engine temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|}
\hline Signal & Description & Units \\
\hline IntkGasMassFlw & Engine air mass flow output & kg/s \\
\hline NrmlzdAirChrg & Normalized engine cylinder air mass & N/A \\
\hline Afr & Air-fuel ratio (AFR) & N/A \\
\hline FuelMassFlw & Engine fuel flow output & kg/s \\
\hline FuelVolFlw & Volumetric fuel flow & m \({ }^{3}\) / \\
\hline ExhManGasTemp & Engine exhaust gas temperature & K \\
\hline EngTrq & Engine torque output & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EngSpd & Engine speed & rpm \\
\hline CrkAng & \begin{tabular}{l}
Engine crankshaft absolute angle
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where \(C p s\) is crankshaft revolutions per power stroke.
\end{tabular} & degrees crank angle \\
\hline Bsfc & Engine brake-specific fuel consumption (BSFC) & \(\mathrm{g} / \mathrm{kWh}\) \\
\hline EoHC & Engine out hydrocarbon emission mass flow & kg/s \\
\hline EoC0 & Engine out carbon monoxide emission mass flow rate & kg/s \\
\hline EoN0x & Engine out nitric oxide and nitrogen dioxide emissions mass flow & kg/s \\
\hline EoC02 & Engine out carbon dioxide emission mass flow & kg/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multicolumn{3}{|l|}{EoPM} & Engine out particulate matter emission mass flow & kg/s \\
\hline \multirow[t]{4}{*}{PwrInfo} & PwrTrnsfrd & PwrCrkshft & Crankshaft power & W \\
\hline & \multirow[t]{2}{*}{PwrNotTrnsfr d} & PwrFuel & Fuel input power & W \\
\hline & & PwrLoss & Power loss & W \\
\hline & \multicolumn{2}{|l|}{PwrStored} & Not used & \\
\hline
\end{tabular}

\section*{EngTrq - Power \\ scalar}

Engine power, \(T_{\text {brake, }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

\section*{Block Options}

\section*{Input command - Table functions}

Fuel mass (default)|Torque
The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, \(F\), engine torque, \(T\), engine speed, \(N\), and engine temperature, \(T e m p_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline Input Command Setting & \begin{tabular}{l}
Input Engine Temperature \\
Parameter Setting
\end{tabular} & Lookup Tables \\
\hline \multirow{2}{*}{ Fuel mass } & off & \(f(F, N)\) \\
\cline { 2 - 3 } & on & \(f\left(F, N, T e m p_{\text {Eng }}\right)\) \\
\hline \multirow{2}{*}{ Torque } & off & \(f(T, N)\) \\
\cline { 2 - 3 } & on & \(f\left(T, N, T e m p_{\text {Eng }}\right)\) \\
\hline
\end{tabular}

\section*{Dependencies}
- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f_tbrake_f_bpt.
- Selecting Torque enables Breakpoints for commanded torque input, f_tbrake_t_bpt.
- Selecting Input engine temperature enables Breakpoints for temperature input, f_tbrake_engtmp_bpt.

\section*{Include turbocharger lag effect - Increase time constant off (default)}

To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Calculation} & \multicolumn{2}{|l|}{Input command Parameter Setting} \\
\hline & Fuel mass & Torque \\
\hline Dynamic torque & \[
\frac{d F_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(F_{c m d}-F_{\max }\right)
\] & \[
\frac{d T_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(T_{c m d}-T_{\max }\right)
\] \\
\hline Fuel mass per injection or torque - with turbocharger lag & \[
\begin{aligned}
& F= \\
& \begin{cases}F_{c m d} & \text { when } F_{c m d}<F_{\max } \\
F_{\max } & \text { when } F_{c m d} \geq F_{\max }\end{cases}
\end{aligned}
\] & \[
\begin{aligned}
& T_{\text {target }}= \\
& \begin{cases}T_{c m d} & \text { when } T_{c m d}<T_{\max } \\
T_{\max } & \text { when } T_{c m d} \geq T_{\max }\end{cases}
\end{aligned}
\] \\
\hline Fuel mass per injection or torque- without turbocharger lag & \(F=F_{c m d}=F_{\text {max }}\) & \(T_{\text {target }}=T_{\text {cmd }}=T_{\text {max }}\) \\
\hline Boost time constant & \[
\begin{aligned}
& \tau_{b s t}= \\
& \begin{cases}\tau_{b s t, \text { rising }} & \text { when } F_{c m d}>F_{\mathrm{max}} \\
\tau_{b s t, \text { falling }} & \text { when } F_{c m d} \leq F_{\mathrm{max}}\end{cases}
\end{aligned}
\] & \[
\begin{aligned}
& \tau_{b s t}= \\
& \begin{cases}\tau_{b s t, \text { rising }} & \text { when } T_{c m d}>T_{\max } \\
\tau_{\text {bst, falling }} & \text { when } T_{c m d} \leq T_{\max }\end{cases}
\end{aligned}
\] \\
\hline Final time constant & \multicolumn{2}{|l|}{\[
\tau_{\text {eng }}= \begin{cases}\tau_{\text {nat }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}
\]} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {brake }}\) & Brake torque \\
\(F\) & Fuel mass per injection \\
\(F_{\text {cmd }}, F_{\text {max }}\) & Commanded and maximum fuel mass per injection, respectively \\
\(T_{\text {target, }}, T_{\text {cmd }}, T_{\text {max }}\) & Target, commanded, and maximum torque, respectively \\
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bst, rising, }} \tau_{\text {bst,falling }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {eng }}\) & Final time constant \\
\(\tau_{\text {nat }}\) & Time constant below the boost torque speed line \\
\(f_{\text {bst }}(N)\) & Boost torque/speed line \\
\(N\) & Engine speed \\
Dependencies &
\end{tabular}

Selecting Include turbocharger lag effect enables these parameters:
- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_nat
- Rising maximum fuel mass boost time constant, tau_bst_rising
- Falling maximum fuel mass boost time constant, tau_bst_falling

\section*{Input engine temperature - Create input port}
off (default) | on
Select this to create the EngTemp input port.

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, \(F\), engine torque, \(T\), engine speed, \(N\), and engine temperature, \(T e m p_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline Input Command Setting & \begin{tabular}{l}
Input Engine Temperature \\
Parameter Setting
\end{tabular} & Lookup Tables \\
\hline \multirow{2}{*}{ Fuel mass } & off & \(f(F, N)\) \\
\cline { 2 - 3 } & on & \(f\left(F, N, T e m p_{\text {Eng }}\right)\) \\
\hline \multirow{2}{*}{ Torque } & off & \(f(T, N)\) \\
\cline { 2 - 3 } & on & \(f\left(T, N, T e m p_{\text {Eng }}\right)\) \\
\hline
\end{tabular}

\section*{Configuration}

\section*{Calibrate Maps - Calibrate tables with measured data \\ selection}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|c|}
\hline Task & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{4}{*}{Import firing data} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/CiEngineData.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Input command & Required Data & Optional Data \\
\hline & Fuel mass & \begin{tabular}{l}
- Engine speed, rpm \\
- Commanded fuel mass per injection, mg \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\)
\end{tabular} & \begin{tabular}{l}
- Air mass flow rate, kg/s \\
- Brake specific fuel consumption, \(\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})\) \\
- CO2 mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & Torque & \begin{tabular}{l}
- Engine speed, rpm \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\)
\end{tabular} & \begin{tabular}{l}
- CO mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Exhaust temperature, K \\
- Fuel mass flow rate, kg/s \\
- HC mass flow rate, kg/s \\
- NOx mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Particulate matter mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline
\end{tabular}

Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque.

To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l}
Import non-firing \\
data
\end{tabular} & \begin{tabular}{l}
Import this non-firing data from a file. For example, open <matlabroot>/ \\
toolbox/autoblks/autodemos/projectsrc/CIDynamometer/ \\
CalMappedEng/CiEngineData.xlsx. \\
- Engine speed, rpm \\
- Engine torque, N•m \\
Collect non-firing (motoring) data at steady-state operating conditions when \\
fuel is cut off. All non-firing torque points must be less than zero. Non-firing \\
data is a function of engine speed only.
\end{tabular} \\
\hline \begin{tabular}{l}
Generate response \\
models
\end{tabular} & \begin{tabular}{l}
For both firing and non-firing data, the Model-Based Calibration Toolbox uses \\
test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The \\
Model-Based Calibration Toolbox Model Browser opens. For more information, \\
see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l}
Generate \\
calibration
\end{tabular} & \begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the firing and non-firing response \\
models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The Model- \\
Based Calibration Toolbox CAGE Browser opens. For more information, see \\
"Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l}
Update block \\
parameters
\end{tabular} & \begin{tabular}{l}
Update the block lookup table and breakpoint parameters with the calibration.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Breakpoints for commanded fuel mass input, f_tbrake_f_bpt - Breakpoints}

1-by-M vector
Breakpoints, in mg/inj.

\section*{Dependencies}

Setting Input command to Fuel mass enables this parameter.

\section*{Breakpoints for commanded torque input, f_tbrake_t_bpt - Breakpoints}

1-by-M vector
Breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

Setting Input command to Torque enables this parameter.

\section*{Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints}

1-by-N vector
Breakpoints, in rpm.

Breakpoints for temperature input, f_tbrake_engtmp_bpt - Breakpoints [233.15 273.15 373.15] (default) | 1-by-L vector

Breakpoints, in K.
Dependencies
To enable this parameter, select Input engine temperature.
Number of cylinders, NCyl - Number
4 (default) | scalar
Number of cylinders.
Crank revolutions per power stroke, Cps - Crank revolutions
2 (default) | scalar
Crank revolutions per power stroke.
Total displaced volume, Vd - Volume
0.0015 (default) | scalar

Volume displaced by engine, in \(\mathrm{m}^{\wedge} 3\).
Fuel lower heating value, Lhv - Heating value 45e6 (default) | scalar

Fuel lower heating value, \(L H V\), in J/kg.
Fuel specific gravity, Sg - Specific gravity
0.832 (default) | scalar

Specific gravity of fuel, \(S g_{\text {fuel }}\), dimensionless.
Ideal gas constant air, Rair - Constant
287 (default) | scalar
Ideal gas constant of air and residual gas entering the engine intake port, in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure
101325 (default) | scalar
Standard air pressure, in Pa.
Air standard temperature, Tstd - Temperature
293.15 (default) | scalar

Standard air temperature, in K.
Boost torque line, f_tbrake_bst - Boost lag
[90, \(95,95,95,96,100, \overline{1} 04,104,104,100,95,85,75,67,60,55]\) (default) | 1-by-M vector
Boost torque line, \(f_{b s t}(N)\), in \(N \cdot \mathrm{~m}\).

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.

\section*{Time constant below boost line - Time constant below 0.1 (default) | scalar}

Time constant below boost line, \(\tau_{\text {nat }}\), in s .

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Rising maximum fuel mass boost time constant, tau_bst_rising - Rising time constant
1.0 (default) | scalar

Rising maximum fuel mass boost time constant, \(\tau_{\text {bst,rising }}\) in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Falling maximum fuel mass boost time constant, tau_bst_falling - Falling time constant
0.7 (default) | scalar

Falling maximum fuel mass boost time constant, \(\tau_{\text {bst.falling }}\) in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Turbocharger time constant blend fuel mass fraction, f_blend_frac - Time constant
0.01 (default) | scalar

Turbocharger time constant blend fuel mass fraction, in s.
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Power
Brake torque map, f_tbrake - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine brake torque lookup table is a function of commanded fuel mass and engine speed, \(T_{\text {brake }}=f(F, N)\), where: \\
- \(T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine brake torque lookup table is a function of target torque and engine speed, \(T_{\text {brake }}=f\left(T_{\text {target }}, N\right)\), where: \\
- \(T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot brake torque map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Brake torque map, f_tbrake_3d - 3D lookup table
M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine brake torque lookup table is a function of commanded fuel mass and engine speed, \(T_{\text {brake }}=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- Temp \(_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}
Input Command Setting Description
\begin{tabular}{|c|c|}
\hline Torque & \begin{tabular}{l}
The engine brake torque lookup table is a function of target torque and engine speed, \(T_{\text {brake }}=\mathrm{f}\left(T_{\text {target }}, N, \mathrm{Temp}_{\text {Eng }}\right)\), where: \\
- \(T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Air}

Air mass flow map, f_air - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The air mass flow lookup table is a function of commanded fuel mass and engine speed, \(\dot{m}_{\text {intk }}=f\left(F_{\text {max }}, N\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F_{\text {max }}\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The air mass flow lookup table is a function of maximum torque and engine speed, \(\dot{m}_{\text {intk }}=\mathrm{f}\left(T_{\text {max }}, N\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\max }\) is maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot air mass map - Plot table}
button

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Air mass flow map, f_air_3d - 3D lookup table M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The air mass flow lookup table is a function of commanded fuel mass and engine speed, \(\dot{m}_{\text {intk }}=f\left(F_{\text {max }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F_{\text {max }}\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- Temp \(_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The air mass flow lookup table is a function of maximum torque and engine speed, \(\dot{m}_{\text {intk }}=f\left(T_{\text {max }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\max }\) is maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- Temp \(_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Fuel}

Fuel flow map, f_fuel - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine fuel flow lookup table is a function of commanded fuel mass and engine speed, MassFlow \(=f(F, N)\), where: \\
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
Commanded Fuel (mg/inj)
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine fuel flow lookup table is a function of target torque and engine speed, MassFlow \(=f\left(T_{\text {target }}, N\right)\), where: \\
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot fuel flow map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Fuel flow map, f_fuel_3d - 3D lookup table
M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine fuel flow lookup table is a function of commanded fuel mass, engine speed, and engine temperature, MassFlow \(=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine fuel flow lookup table is a function of target torque and engine speed, and engine temperature, MassFlow \(=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Temperature}

Exhaust temperature map, f_texh - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine exhaust temperature table is a function of commanded fuel mass and engine speed, \(T_{\text {exh }}=f(F, N)\), where: \\
- \(T_{e x h}\) is exhaust temperature, in K . \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}
Input Command Setting Description
\begin{tabular}{|c|c|}
\hline Torque & \begin{tabular}{l}
The engine exhaust temperature table is a function of target torque and engine speed, \(T_{\text {exh }}=f\left(T_{\text {target, }}, N\right)\), where: \\
- \(T_{\text {exh }}\) is exhaust temperature, in K . \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot exhaust temperature map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Exhaust temperature map, f_texh_3d - 3D lookup table
M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine exhaust temperature table is a function of commanded fuel mass and engine speed, \(T_{\text {exh }}=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(T_{\text {exh }}\) is exhaust temperature, in K. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine exhaust temperature table is a function of target torque and engine speed, \(T_{\text {exh }}=f\left(T_{\text {target, }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(T_{\text {exh }}\) is exhaust temperature, in K . \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- Temp \(_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Efficiency}

\section*{BSFC map, f_eff - 2D lookup table}

M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, \(B S F C=f(F, N)\), where: \\
- \(B S F C\) is BSFC , in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
Engine Speed (RPM) \\
Commanded Fuel (mg/inj)
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, \(B S F C=f\left(T_{\text {target }}, N\right)\), where: \\
- \(B S F C\) is BSFC , in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot BSFC map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
BSFC map, f_eff_3d - 3D lookup table
M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, \(B S F C=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(B S F C\) is \(B S F C\), in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Input Command Setting & Description \\
\hline Torque
\end{tabular}
\begin{tabular}{|c|c|}
\hline Torque & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, \(B S F C=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(B S F C\) is BSFC , in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.
HC
EO HC map, f_hc - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, \(E O H C=f(F, N)\), where: \\
- EO HC is engine-out hydrocarbon emissions, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of target torque and engine speed, EO HC \(=f\left(T_{\text {target }}, N\right)\), where: \\
- EO HC is engine-out hydrocarbon emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO HC map - Plot table}
button

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO HC map, f_hc_3d - 3D lookup table}

M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, \(E O H C=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO HC is engine-out hydrocarbon emissions, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(\mathrm{Temp}_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of target torque and engine speed, \(E O H C=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO HC is engine-out hydrocarbon emissions, in kg/s. \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{CO}

EO CO map, f_co - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, \(E O C O=f(F, N)\), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
Engine Speed (RPM) \\
Commanded Fuel (mg/inj)
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of target torque and engine speed, \(E O C O=f\left(T_{\text {target }}, N\right)\), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO CO map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO CO map, f_co_3d - 3D lookup table}

M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, \(E O C O=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of target torque and engine speed, EO CO \(=f\left(T_{\text {target }}, N\right.\), Temp \(\left.p_{\text {Eng }}\right)\), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.
NOx
EO NOx map, f_nox - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass and engine speed, \(E O\) NOx \(=f(F, N)\), where: \\
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Input Command Setting & D \\
\hline Torque & Th \\
& o \\
& • \\
& \\
\hline
\end{tabular}

\section*{Description}

The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, EO NOx \(=f\left(T_{\text {target }}, N\right)\), where:
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO NOx map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
EO NOx map, f_nox_3d - 3D lookup table
M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, \(E O\) \(N O x=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque, engine speed, and engine temperature, EO NOx = \(\mathrm{f}\left(T_{\text {target, }} N, \mathrm{Temp}_{\text {Eng }}\right)\), where: \\
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

CO2
E0 C02 map, f_co2 - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of commanded fuel mass and engine speed, \(E O C O 2=f(F, N)\), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of target torque and engine speed, EO CO2 \(=f\left(T_{\text {target }}, N\right)\), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot C02 map - Plot table}

\section*{button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO CO2 map, f_co2_3d - 3D lookup table}

M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, \(E O C O 2=f(F, N\), \(\operatorname{Temp}_{\text {Eng }}\)), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of target torque, engine speed, and engine temperature, EO CO2 \(=f\left(T_{\text {target }}, N, T_{\text {Temp }}^{\text {Eng }}\right.\) \()\), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(\mathrm{Temp}_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.
PM
EO PM map, f_pm - 2D lookup table
M-by-N matrix
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out PM emissions are a function of commanded fuel mass and engine speed, where: \\
- \(E O P M\) is engine-out \(P M\) emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out PM emissions are a function of target torque and engine speed, \(E O P M=f\left(T_{\text {target }}, N\right)\), where: \\
- EO PM is engine-out PM emissions, in kg/s. \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO PM map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO PM map, f_pm_3d - 3D lookup table}

M-by-N-by-L array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out PM emissions are a function of commanded fuel mass, engine speed, and engine temperature, where: \\
- EO PM is engine-out PM emissions, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out PM emissions are a function of target torque, engine speed, and engine temperature, \(E O P M=f\left(T_{\text {target }}, N, T\right)\), where: \\
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- Temp \(_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

CI Core Engine | Mapped Motor | Mapped SI Engine

\section*{Topics}
"Generate Mapped CI Engine from a Spreadsheet"
"Engine Calibration Maps"
"Model-Based Calibration Toolbox"

\section*{Introduced in R2017a}

\section*{Mapped SI Engine}

Spark-ignition engine model using lookup tables
Library: Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion

\section*{Description}

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:
- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, \(T_{\text {cmd }}\), brake torque, \(T_{\text {brake }}\), and engine speed, \(N\). If you select Input engine temperature, the tables are also a function of engine temperature, \(\mathrm{Temp}_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Table } & \multicolumn{2}{|l|}{ Input Engine Temperature Parameter Setting } \\
& off & on \\
\hline Power & \(f\left(T_{\text {cmd }}, N\right)\) & \(f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\) \\
\hline Air & \(f\left(T_{\text {brake }}, N\right)\) & \(f\left(T_{\text {brake }}, N, T e m p_{\text {Eng }}\right)\) \\
\hline Fuel & \\
\hline Temperature & \\
\hline Efficiency & \\
\hline HC & \\
\hline CO & \\
\hline NOx & & \\
\hline CO2 & & \\
\hline PM & & \\
\hline
\end{tabular}

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|}
\hline Task & Description \\
\hline \multirow[t]{4}{*}{Import firing data} & \begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/SiEngineData.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline & \begin{tabular}{|l|l}
\hline Required Data & Optional Data \\
\hline
\end{tabular} \\
\hline & \\
\hline & \begin{tabular}{l}
Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular} \\
\hline Import non-firing data & \begin{tabular}{l}
Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/autoblks/autodemos/projectsrc/SIDynamometer/ CalMappedEng/SiEngineData.xlsx. \\
- Engine speed, rpm \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
\end{tabular} \\
\hline Generate response models & \begin{tabular}{l}
For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline Generate calibration & \begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l}
Update block \\
parameters
\end{tabular} & Update the block lookup table and breakpoint parameters with the calibration. \\
\hline
\end{tabular}

\section*{Cylinder Air Mass}

The block calculates the normalized cylinder air mass using these equations.
\[
\begin{aligned}
& M_{N o m}=\frac{P_{s t d} V_{d}}{N_{c y l} R_{a i r} T_{s t d}} \\
& L=\frac{\left(\frac{60 s}{\min }\right) C p s \cdot \dot{m}_{a i r}}{\left(\frac{1000 \mathrm{~g}}{\mathrm{Kg}}\right) N_{C y l} \cdot N \cdot M_{N o m}}
\end{aligned}
\]

The equations use these variables.
\(L \quad\) Normalized cylinder air mass
\(M_{\text {Nom }} \quad\) Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps Crankshaft revolutions per power stroke, rev/stroke
\(P_{s t d} \quad\) Standard pressure
\(T_{s t d} \quad\) Standard temperature
\(R_{\text {air }} \quad\) Ideal gas constant for air and burned gas mixture
\(V_{d} \quad\) Displaced volume
\(N_{\text {cyl }} \quad\) Number of engine cylinders
\(N \quad\) Engine speed
\(\dot{m}_{\text {intk }} \quad\) Engine air mass flow, in \(\mathrm{g} / \mathrm{s}\)

\section*{Turbocharger Lag}

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.
\begin{tabular}{|l|c|}
\hline Dynamic torque & \(\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)\) \\
\hline Boost time constant & \(\tau_{\text {bst }}= \begin{cases}\tau_{\text {bst, rising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\
\tau_{\text {bst,falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{cases}\) \\
\hline Final time constant & \(\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{b s t}(N) \\
\tau_{b s t} & \text { when } T_{\text {brake }} \geq f_{b s t}(N)\end{cases}\) \\
\hline
\end{tabular}

The equations use these variables.
\(T_{\text {brake }} \quad\) Brake torque
\begin{tabular}{ll}
\(T_{\text {stdy }}\) & Steady-state target torque \\
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bst,rising, }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {bst,faling }}\) & \\
\(\tau_{\text {eng }}\) & Final time constant \\
\(\tau_{\text {thr }}\) & Time constant during throttle control \\
\(f_{\text {bst }}(N)\) & Boost torque speed line \\
\(N\) & Engine speed
\end{tabular}

\section*{Fuel Flow}

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{f u e l}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{1000 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{f u e l}}
\]

The equation uses these variables.
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow
\(S g_{\text {fuel }} \quad\) Specific gravity of fuel
\(Q_{\text {fuel }} \quad\) Volumetric fuel flow

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
PwrInf \\
0
\end{tabular}} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrCrkshft & Crankshaft power & \(-\tau_{\text {eng }} \omega\) \\
\hline & PwrNotTrnsfrd - Power crossing the block boundary, but not transferred & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & \begin{tabular}{l}
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Power loss & \[
\begin{aligned}
& \tau_{\text {eng }} \omega \\
& -\dot{m}_{\text {fuel }} L H V
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of cha \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & & Not used & \\
\hline
\end{tabular}

The equations use these variables.
LHV Fuel lower heating value
\(\omega \quad\) Engine speed, rad/s
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow
\(\tau_{\text {eng }} \quad\) Fuel mass per injection time constant

\section*{Ports}

Input

\section*{TrqCmd - Commanded torque \\ scalar}

Torque, \(T_{\text {cmd }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
EngSpd - Engine speed
scalar
Engine speed, \(N\), in rpm.
EngTemp - Engine temperature
scalar
Engine temperature, \(\mathrm{Temp}_{\text {Eng }}\), in K .

\section*{Dependencies}

To enable this port, select Input engine temperature.

\section*{Output}

Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline IntkGassMassFlw & Engine air mass flow output & \(\mathrm{kg} / \mathrm{s}\) \\
\hline NrmlzdAirChrg & Normalized engine cylinder air mass & \(\mathrm{N} / \mathrm{A}\) \\
\hline Afr & Air-fuel ratio (AFR) & \(\mathrm{N} / \mathrm{A}\) \\
\hline FuelMassFlw & Engine fuel flow output & \(\mathrm{kg} / \mathrm{s}\) \\
\hline FuelVolFlw & Volumetric fuel flow & \(\mathrm{m} / \mathrm{s}\) \\
\hline ExhManGasTemp & Engine exhaust gas temperature & K \\
\hline EngTrq & Engine torque output & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EngSpd & Engine speed & rpm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multicolumn{3}{|l|}{CrkAng} & \begin{tabular}{l}
Engine crankshaft absolute angle
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where Cps is crankshaft revolutions per power stroke.
\end{tabular} & degrees crank angle \\
\hline \multicolumn{3}{|l|}{Bsfc} & Engine brake-specific fuel consumption (BSFC) & \(\mathrm{g} / \mathrm{kWh}\) \\
\hline \multicolumn{3}{|l|}{EoHC} & Engine out hydrocarbon emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoCO} & Engine out carbon monoxide emission mass flow rate & kg/s \\
\hline \multicolumn{3}{|l|}{EoN0x} & Engine out nitric oxide and nitrogen dioxide emissions mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoC02} & Engine out carbon dioxide emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoPM} & Engine out particulate matter emission mass flow & kg/s \\
\hline \multirow[t]{4}{*}{PwrInfo} & PwrTrnsfrd & PwrCrkshft & Crankshaft power & W \\
\hline & \multirow[t]{2}{*}{PwrNotTrnsfrd} & PwrFuel & Fuel input power & W \\
\hline & & PwrLoss & Power loss & W \\
\hline & \multicolumn{2}{|l|}{PwrStored} & Not used & \\
\hline
\end{tabular}

\section*{EngTrq - Engine brake torque \\ scalar}

Engine brake torque, \(T_{\text {brake }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

\section*{Block Options}

\section*{Include turbocharger lag effect - Increase time constant \\ off (default)}

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.
\begin{tabular}{|l|l|}
\hline Dynamic torque & \(\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline Boost time constant & \(\tau_{\text {bst }}= \begin{cases}\tau_{\text {bst, } \text { rising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\
\tau_{\text {bst }, \text { falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{cases}\) \\
\hline Final time constant & \(\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\
\tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {brake }}\) & Brake torque \\
\(T_{\text {stdy }}\) & Steady-state target torque \\
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bstrising, }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {bst,falling }}\) & \\
\(\tau_{\text {eng }}\) & Final time constant \\
\(\tau_{\text {thr }}\) & Time constant during throttle control \\
\(f_{\text {bst }}(N)\) & Boost torque speed line \\
\(N\) & Engine speed \\
Dependencies &
\end{tabular}

Selecting Include turbocharger lag effect enables these parameters:
- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_thr
- Rising torque boost time constant, tau_bst_rising
- Falling torque boost time constant, tau_bst_falling

\section*{Input engine temperature - Create input port}
off (default) | on
Select this to create the EngTemp input port.
The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, \(T_{\text {cmd }}\), brake torque, \(T_{\text {brake }}\), and engine speed, \(N\). If you select Input engine temperature, the tables are also a function of engine temperature, \(\mathrm{Temp}_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Table } & \multicolumn{2}{|l|}{ Input Engine Temperature Parameter Setting } \\
& off & on \\
\hline Power & \(f\left(T_{\text {cmd }}, N\right)\) & \(f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\) \\
\hline Air & \(\left(T_{\text {brake, }}, N\right)\) & \(f\left(T_{\text {brake }}, N, T e m p_{\text {Eng }}\right)\) \\
\hline Fuel & & \\
\hline Temperature & & \\
\hline Efficiency & & \\
\hline HC & & \\
\hline CO & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Table & \multicolumn{2}{|l|}{ Input Engine Temperature Parameter Setting } \\
& off & on \\
\hline NOx & & \\
\hline CO2 & & \\
\hline PM & & \\
\hline
\end{tabular}

\section*{Configuration}

Calibrate Maps - Calibrate tables with measured data
selection
If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Import firing data & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/SiEngineData.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Required Data & Optional Data \\
\hline & \begin{tabular}{l}
- Engine speed, rpm \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\)
\end{tabular} & \begin{tabular}{l}
- Air mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Brake specific fuel consumption, \(\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})\) \\
- CO2 mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- CO mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Exhaust temperature, K \\
- Fuel mass flow rate, kg/s \\
- HC mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- NOx mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Particulate matter mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline
\end{tabular}

Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque.

To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l}
Import non-firing \\
data
\end{tabular} & \begin{tabular}{l}
Import this non-firing data from a file. For example, open <matlabroot>/ \\
toolbox/autoblks/autodemos/projectsrc/SIDynamometer/ \\
CalMappedEng/SiEngineData.xlsx.
\end{tabular} \\
& \begin{tabular}{l}
- Engine speed, rpm \\
- Engine torque, N•m \\
Collect non-firing (motoring) data at steady-state operating conditions when \\
fuel is cut off. All non-firing torque points must be less than zero. Non-firing \\
data is a function of engine speed only.
\end{tabular} \\
\hline \begin{tabular}{l}
Generate response \\
models
\end{tabular} & \begin{tabular}{l}
For both firing and non-firing data, the Model-Based Calibration Toolbox uses \\
test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The \\
Model-Based Calibration Toolbox Model Browser opens. For more information, \\
see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l}
Generate \\
calibration
\end{tabular} & \begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the firing and non-firing response \\
models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The Model- \\
Based Calibration Toolbox CAGE Browser opens. For more information, see \\
"Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l}
Update block \\
parameters
\end{tabular} & \begin{tabular}{l}
Update the block lookup table and breakpoint parameters with the calibration.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Breakpoints for commanded torque, f_tbrake_t_bpt - Breakpoints \\ 1-by-M vector}

Breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints \\ 1-by-N vector}

Breakpoints, in rpm.

\section*{Breakpoints for temperature input, f_tbrake_engtmp_bpt - Breakpoints}
[233.15 273.15 373.15] (default) | 1-by-L vector
Breakpoints, in K.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Number of cylinders, NCyl - Number}

4 (default) | scalar
Number of cylinders.

\section*{Crank revolutions per power stroke, Cps - Crank revolutions}

2 (default) | scalar
Crank revolutions per power stroke.
Total displaced volume, Vd - Volume
0.0015 (default) | scalar

Volume displaced by engine, in m^3.
Fuel lower heating value, Lhv - Heating value
45e6 (default) | scalar
Fuel lower heating value, \(L H V\), in \(\mathrm{J} / \mathrm{kg}\).
Fuel specific gravity, Sg - Specific gravity
0.745 (default) |scalar

Specific gravity of fuel, \(S g_{\text {fuel }}\), dimensionless.
Ideal gas constant air, Rair - Constant
287 (default) | scalar
Ideal gas constant of air and residual gas entering the engine intake port, in \(\mathrm{J} /(\mathrm{kg} * \mathrm{~K})\).
Air standard pressure, Pstd - Pressure 101325 (default) | scalar

Standard air pressure, in Pa.
Air standard temperature, Tstd - Temperature
293.15 (default) | scalar

Standard air temperature, in K.
Boost torque line, f_tbrake_bst - Boost lag
1-by-M vector
Boost torque line, \(f_{b s t}(N)\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Time constant below boost line - Time constant below
0.2 (default) | scalar

Time constant below boost line, \(\tau_{\text {thr }}\), in s.

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Rising torque boost time constant, tau_bst_rising - Rising time constant 1.5 (default) | scalar

Rising torque boost time constant, \(\tau_{\text {bst,rising, }}\) in s .

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Falling torque boost time constant, tau_bst_falling - Falling time constant 1 (default) | scalar

Falling torque boost time constant, \(\tau_{\text {bst,falling }}\) in s.

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.

\section*{Power}

Brake torque map, f_tbrake - 2D lookup table
M-by-N matrix
The engine torque lookup table is a function of commanded engine torque and engine speed, \(T=\) \(f\left(T_{c m d}, N\right)\), where:
- \(T\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.

\section*{Plot brake torque map - Plot table} button

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Brake torque map, f_tbrake_3d - 3D lookup table}

M-by-N-by-L array
The engine torque lookup table is a function of commanded engine torque, engine speed, and engine temperature, \(T=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\), where:
- \(T\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Air}

Air mass flow map, f_air - 2D lookup table
M-by-N matrix
The engine air mass flow lookup table is a function of commanded engine torque and engine speed, \(\dot{m}_{\text {intk }}=f\left(T_{\text {cmd }}, N\right)\), where:
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot air mass map - Plot table}

\section*{button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Air mass flow map, f_air_3d - 3D lookup table \\ M-by-N-by-L array}

The engine air mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, \(\dot{m}_{\text {intk }}=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)\), where:
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Fuel}

\section*{Fuel flow map, f_fuel - 2D lookup table}

M-by-N matrix
The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed, MassFlow \(=f\left(T_{\text {cmd }}, N\right)\), where:
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot fuel flow map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Fuel flow map, f_fuel_3d - 3D lookup table \\ M-by-N-by-L array}

The engine fuel mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, MassFlow \(=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\), where:
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Temperature}

Exhaust temperature map, f_texh - 2D lookup table
M-by-N matrix
The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed, \(T_{\text {exh }}=f\left(T_{c m d}, N\right)\), where:
- \(T_{\text {exh }}\) is exhaust temperature, in K.
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot exhaust temperature map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Exhaust temperature map, f_texh_3d - 3D lookup table array}

The engine exhaust temperature lookup table is a function of commanded engine torque, engine speed, and engine temperature, \(T_{\text {exh }}=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\), where:
- \(T_{\text {exh }}\) is exhaust temperature, in \(K\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Efficiency}

\section*{BSFC map, f_eff - 2D lookup table}

M-by-N-by-L array
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed, \(B S F C=f\left(T_{\text {cmd }}, N\right)\), where:
- \(B S F C\) is BSFC, in \(\mathrm{g} / \mathrm{kWh}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot BSFC map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{BSFC map, f_eff_3d - 3D lookup table}

M-by-N-by-L array
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque, engine speed, and engine temperature, \(B S F C=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\), where:
- BSFC is BSFC, in \(\mathrm{g} / \mathrm{kWh}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

HC
EO HC map, f_hc - 2D lookup table
M-by-N matrix
The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed, \(E O H C=f\left(T_{c m d}, N\right)\), where:
- EO HC is engine-out hydrocarbon emissions, in kg/s.
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO HC map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO HC map, f_hc_3d - 3D lookup table}

M-by-N-by-L array
The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, \(E O H C=f\left(T_{c m d}, N, T e m p_{E n g}\right)\), where:
- \(E O H C\) is engine-out hydrocarbon emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{CO}

\section*{EO CO map, f_co - 2D lookup table}

M-by-N matrix
The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed, \(E O C O=f\left(T_{c m d}, N\right)\), where:
- EOCO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO CO map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO HC map, f_hc_3d - 3D lookup table}

M-by-N-by-L array
The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, \(E O H C=f\left(T_{c m d}, N, T e m p_{E n g}\right)\), where:
- \(E O H C\) is engine-out hydrocarbon emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

NOx
EO NOx map, f_nox - 2D lookup table
M-by-N matrix
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed, \(E O N O x=f\left(T_{c m d}, N\right)\), where:
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO NOx map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO NOx map, f_nox_3d - 3D lookup table}

M-by-N-by-L array
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, EO NOx \(=f\left(T_{c m d}, N\right.\), Temp \(\left.p_{E n g}\right)\), where:
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(\quad N\) is engine speed, in rpm.
- Temp \({ }_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

CO2
EO CO2 map, f_co2 - 2D lookup table
M-by-N matrix
The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed, \(E O\) CO2 \(=f\left(T_{\text {cmd }}, N\right)\), where:
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot C02 map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO CO2 map, f_co2_3d - 3D lookup table}

M-by-N-by-L array
The engine-out carbon dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, EO CO2 \(=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)\), where:
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{PM}

EO PM map, f_pm - 2D lookup table
M-by-N matrix
The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO PM map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO PM map, f_pm_3d - 3D lookup table}

M-by-N-by-L array
The engine-out particulate matter emissions are a function of commanded engine torque, engine speed, and engine temperature, where:
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

Dependencies
To enable this parameter, select Input engine temperature.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

SI Core Engine | Mapped Motor | Mapped CI Engine
Topics
"Generate Mapped SI Engine from a Spreadsheet"
"Engine Calibration Maps"
"Model-Based Calibration Toolbox"

Introduced in R2017a

\section*{Simple Engine}

Simplified engine model using lookup tables
\(\begin{array}{ll}\text { Library: } & \text { Powertrain Blockset / Propulsion / Combustion Engines } \\ & \text { Vehicle Dynamics Blockset / Powertrain / Propulsion }\end{array}\)

\section*{Description}

The Simple Engine block implements a simplified engine model using a maximum torque vs engine speed table, two scalar fuel mass properties, and one scalar engine efficiency parameter to estimate engine torque and fuel flow. You can use the block for:
- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

\section*{Ports}

\section*{Input}

\section*{TrqCmd - Commanded torque \\ scalar}

Torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{EngSpd - Engine speed \\ scalar}

Engine speed, in rpm.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline IntkGasMassFlw (zeroed out intentionally) & Engine air mass flow output & \(\mathrm{kg} / \mathrm{s}\) \\
\hline NrmlzdAirChrg (zeroed out intentionally) & Normalized engine cylinder air mass & \(\mathrm{N} / \mathrm{A}\) \\
\hline Afr (zeroed out intentionally) & Air-fuel ratio (AFR) & \(\mathrm{N} / \mathrm{A}\) \\
\hline FuelMassFlw & Engine fuel flow output & \(\mathrm{kg} / \mathrm{s}\) \\
\hline FuelVolFlw & Volumetric fuel flow & \(\mathrm{m}^{3} / \mathrm{s}\) \\
\hline ExhManGasTemp (zeroed out intentionally) & Engine exhaust gas temperature & K \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multicolumn{3}{|l|}{EngTrq} & Engine torque output & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multicolumn{3}{|l|}{EngSpd} & Engine speed & rpm \\
\hline \multicolumn{3}{|l|}{CrkAng (zeroed out intentionally)} & \begin{tabular}{l}
Engine crankshaft absolute angle
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where Cps is crankshaft revolutions per power stroke.
\end{tabular} & degrees crank angle \\
\hline \multicolumn{3}{|l|}{Bsfc} & Engine brake-specific fuel consumption (BSFC) & \(\mathrm{g} / \mathrm{kWh}\) \\
\hline \multicolumn{3}{|l|}{EoHC (zeroed out intentionally)} & Engine out hydrocarbon emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoC0 (zeroed out intentionally)} & Engine out carbon monoxide emission mass flow rate & kg/s \\
\hline \multicolumn{3}{|l|}{EoN0x (zeroed out intentionally)} & Engine out nitric oxide and nitrogen dioxide emissions mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoC02 (zeroed out intentionally)} & Engine out carbon dioxide emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoPM (zeroed out intentionally)} & Engine out particulate matter emission mass flow & kg/s \\
\hline \multirow[t]{4}{*}{PwrInfo} & PwrTrnsfrd & PwrCrkshft & Crankshaft power & W \\
\hline & \multirow[t]{2}{*}{PwrNotTrnsfrd} & PwrFuel & Fuel input power & W \\
\hline & & PwrLoss & Power loss & W \\
\hline & \multicolumn{2}{|l|}{PwrStored} & \multicolumn{2}{|l|}{Not used} \\
\hline
\end{tabular}

\section*{EngTrq - Engine brake torque \\ scalar}

Engine brake torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}
```

Engine maximum torque, f_tqmax - Breakpoints
[75.679776480773256 75.679776480773256 97.173658538143172 116.84042599160529 152.21029882684542175174 .99889520597083174 .99996520122858175175175175 175175175 175] (default)

```

Breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Breakpoints for engine speed input, f_tqmax_n_bpt - Breakpoints}

Breakpoints, in rpm.
```

Fuel lower heating value, Lhv - Heating value
4.6E+7 (default)

```

Fuel lower heating value, in J/kg.
Fuel specific gravity, Sg - Specific gravity 0.745 (default)

Specific gravity of fuel, dimensionless.
Average brake specific fuel consumption, BsfcAvg - Average brake specific fuel consumption
350 (default)
Average brake specific fuel consumption, in \(\mathrm{g} / \mathrm{kwh}\).

\section*{Extended Capabilities}
\(\mathbf{C} / \mathbf{C}+\boldsymbol{+}\) Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR} \mathrm{Coder}^{\mathrm{TM}}\).
See Also

Introduced in R2021b

Electric Motor, Converters, Inverter Blocks

\section*{Interior PMSM}

Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force Library: Powertrain Blockset / Propulsion / Electric Motors and Inverters Motor Control Blockset / Electrical Systems / Motors

\section*{Description}

The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and singleprecision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

On the Parameters tab, if you select Back-emf, the block implements this equation to calculate the permanent flux linkage constant.
\[
\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \pi}
\]

\section*{Motor Construction}

This figure shows the motor construction with a single pole pair on the motor.

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with motor angle.

For the axes convention, the \(a\)-phase and permanent magnet fluxes are aligned when motor angle \(\theta_{r}\) is zero.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements these equations, expressed in the motor flux reference frame (dq frame). All quantities in the motor reference frame are referred to the stator.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d}{d t} i_{d}=\frac{1}{L_{d}} v_{d}-\frac{R}{L_{d}} i_{d}+\frac{L_{q}}{L_{d}} P \omega_{m} i_{q} \\
& \frac{d}{d t} i_{q}=\frac{1}{L_{q}} v_{q}-\frac{R}{L_{q}} i_{q}-\frac{L_{d}}{L_{q}} P \omega_{m} i_{d}-\frac{\lambda_{p m} P \omega_{m}}{L_{q}} \\
& T_{e}=1.5 P\left[\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]
\end{aligned}
\]

The \(L_{q}\) and \(L_{d}\) inductances represent the relation between the phase inductance and the motor position due to the saliency of the motor.

The equations use these variables.
\begin{tabular}{ll}
\(L_{q}, L_{d}\) & \(\mathrm{q}-\) and d-axis inductances (H) \\
\(R\) & Resistance of the stator windings (ohm) \\
\(i_{q}, i_{d}\) & q - and d-axis currents (A) \\
\(v_{q}, v_{d}\) & q - and d-axis voltages (V)
\end{tabular}
\begin{tabular}{ll}
\(\omega_{m}\) & Angular mechanical velocity of the motor (rad/s) \\
\(\omega_{e}\) & Angular electrical velocity of the motor (rad/s) \\
\(\lambda_{p m}\) & \begin{tabular}{l}
Permanent flux linkage constant \((\mathrm{Wb})\) \\
\(K_{e}\)
\end{tabular} \\
\begin{tabular}{l}
Back electromotive force \((\mathrm{EMF})(\mathrm{Vpk} \mathrm{LL} / \mathrm{krpm}\), where Vpk_LL is the peak voltage \\
line-to-line measurement)
\end{tabular} \\
\(T_{e}\) & Number of pole pairs \\
\(\Theta_{e}\) & Electromagnetic torque \((\mathrm{Nm})\) \\
& Electrical angle (rad)
\end{tabular}

\section*{Mechanical System}

The motor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\(J \quad\) Combined inertia of motor and load (kgm^2)
\(F \quad\) Combined viscous friction of motor and load (\(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\))
\(\theta_{m} \quad\) Motor mechanical angular position (rad)
\(T_{m} \quad\) Motor shaft torque (Nm)
\(T_{e} \quad\) Electromagnetic torque (Nm)
\(T_{f} \quad\) Motor shaft static friction torque (Nm)
\(\omega_{m} \quad\) Angular mechanical velocity of the motor (rad/s)

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=-\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{array}{lll}
P_{\text {bus }}= & v_{a n} i_{a}+v_{b n} i_{b} \\
+v_{c n} i_{c}
\end{array}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input
\end{tabular} & PwrElec Loss & Resistive power loss & \(P_{\text {elec }}\) & \[
\begin{aligned}
& P_{\text {elec }}=\quad-\frac{3}{2}\left(R_{s} i_{s d}^{2}\right. \\
& \left.+R_{s} i_{s q}^{2}\right)
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline - Negative signals indicate a loss & PwrMech Loss & Mechanical power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When Port Configuration is set to Torque:
\[
\left\lvert\, \begin{aligned}
& P_{\text {mech }}=- \\
& \left(\omega_{m}^{2} F+\left|\omega_{m}\right| T_{f}\right)
\end{aligned}\right.
\] \\
When Port Configuration is set to Speed:
\[
P_{\text {mech }}=0
\]
\end{tabular} \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrMtrS tored & Stored motor power & \(P_{\text {str }}\) & \[
\begin{aligned}
P_{\text {str }}= & P_{\text {bus }}+\quad P_{\text {mot }}+ \\
P_{\text {elec }} & +P_{\text {mech }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(R_{\mathrm{s}}\) & Stator resistance (ohm) \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, and c current (A) \\
\(i_{s q}, i_{s d}\) & Stator q-and d-axis currents (A) \\
\(v_{a n}, v_{b n}, v_{c n}\) & Stator phase a, b, and c voltage (V) \\
\(\omega_{m}\) & Angular mechanical velocity of the rotor (rad/s) \\
\(F\) & Combined motor and load viscous damping (\(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)) \\
\(T_{e}\) & Electromagnetic torque (Nm) \\
\(T_{f}\) & Combined motor and load friction torque (Nm)
\end{tabular}

\section*{Amplitude invariant dq transformation}

The block uses these equations to implement amplitude invariant \(d q\) transformation to ensure that the \(d q\) and three phase amplitudes are equal.
\[
\begin{aligned}
& {\left[\begin{array}{l}
v_{s d} \\
v_{s q}
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
\cos \left(\Theta_{d a}\right) & \cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & \cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right) \\
-\sin \left(\Theta_{d a}\right) & -\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right)
\end{array}\right]\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]} \\
& {\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(\Theta_{d a}\right) & -\sin \left(\Theta_{d a}\right) \\
\cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right) \\
\cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right)
\end{array}\right]\left[\begin{array}{l}
i_{s d} \\
i_{s q}
\end{array}\right]}
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\Theta_{d a}\) & \(d q\) stator electrical angle with respect to the rotor \(a\)-axis (rad) \\
\(v_{s q}, v_{s d}\) & Stator \(q\) - and \(d\)-axis voltages \((\mathrm{V})\) \\
\(i_{s q}, i_{s d}\) & Stator \(q\) - and \(d\)-axis currents (A) \\
\(v_{a}, v_{b}, v_{c}\) & Stator voltage phases \(a, b, c(\mathrm{~V})\) \\
\(i_{a}, i_{b}, i_{c}\) & Stator currents phases \(a, b, c(\mathrm{~A})\)
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{LdTrq - Load torque on motor}
scalar
Load torque on the motor shaft, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque for the Port Configuration parameter.

\section*{Spd - Motor shaft speed \\ scalar}

Angular velocity of the motor, \(\omega_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed for the Port Configuration parameter.

\section*{PhaseVolt - Stator terminal voltages}

1-by-3 array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Dependencies}

To create this port, select Speed or Torque for the Port Configuration parameter.

\section*{Output}

\section*{Info - Bus signal}
bus
The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline IaStator & Stator phase current A & \(i_{a}\) & A \\
\hline IbStator & Stator phase current B & \(i_{b}\) & A \\
\hline IcStator & Stator phase current C & \(i_{c}\) & A \\
\hline IdSync & Direct axis current & \(i_{d}\) & A \\
\hline IqSync & Quadrature axis current & \(i_{q}\) & A \\
\hline VdSync & Direct axis voltage & \(v_{d}\) & V \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline VqSync & Quadrature axis voltage & \(v_{q}\) & V \\
\hline MtrSpd & \begin{tabular}{l}
Angular mechanical velocity of the \\
motor
\end{tabular} & \(\omega_{m}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline MtrPos & Motor mechanical angular position & \(\theta_{m}\) & rad \\
\hline MtrTrq & Electromagnetic torque & \(T_{e}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \multirow{4}{*}{ PwrInfo } & PwrTrnsfrd & PwrMtr & Mechanical power \\
\cline { 2 - 6 } & PwrBus & Electrical power & \(P_{\text {mot }}\) \\
\cline { 2 - 6 } & \begin{tabular}{l}
PwrNotTrns \\
frd
\end{tabular} & \begin{tabular}{l}
PwrElecL \\
oss
\end{tabular} & Resistive power loss \\
\cline { 2 - 6 } & \begin{tabular}{l}
PwrMechL \\
oss
\end{tabular} & Mechanical power loss & \(P_{\text {bus }}\) \\
\hline
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

\section*{1-by-3 array}

Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Speed for the Mechanical input configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{\text {mtr, }}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Mechanical input configuration parameter.

\section*{Parameters}

\section*{Block Options}

\section*{Mechanical input configuration - Select port configuration}

Torque (default) | Speed
This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

\section*{Simulation type - Select simulation type \\ Continuous (default)|Discrete}

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample Time (Ts) - Sample time for discrete integration scalar}

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Parameters}

Number of pole pairs (P) - Pole pairs
scalar
Motor pole pairs, \(P\).
Stator phase resistance per phase (Rs) - Resistance scalar

Stator phase resistance per phase, \(R_{s}\), in ohm.
Stator \(d\)-axis and \(q\)-axis inductance (Ldq) - Inductance
vector
Stator d-axis and q-axis inductance, \(L_{d}, L_{q}\), in H .

\section*{Permanent flux linkage constant (lambda_pm) - Flux}
scalar
Permanent flux linkage constant, \(\lambda_{p m}\), in Wb .

\section*{Back-emf constant (Ke) - Back electromotive force scalar}

Back electromotive force, EMF, \(K_{e}\), in Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line measurement.

To calculate the permanent flux linkage constant, the block implements this equation.
\[
\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \Pi}
\]

Physical inertia, viscous damping, and static friction (mechanical) - Inertia, damping, friction
vector
Mechanical properties of the motor:
- Inertia, \(J\), in kg.m^2
- Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction, \(T_{f}\), in \(N \cdot \mathrm{~m}\)

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.
Initial Values
Initial d-axis and \(q\)-axis current (idq0) - Current vector

Initial q- and d-axis currents, \(i_{q}, i_{d}\), in A .
Initial mechanical position (theta_init) - Angle scalar

Initial motor angular position, \(\theta_{m 0}\), in rad.
Initial mechanical speed (omega_init) - Speed scalar

Initial angular velocity of the motor, \(\omega_{m 0}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{Extended Capabilities}
\(\mathbf{C} / \mathbf{C}++\) Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Interior PM Controller | Flux-Based PMSM | Induction Motor \| Mapped Motor | Surface Mount PMSM Introduced in R2017a

\section*{Interior PM Controller}

Torque-based, field-oriented controller for an internal permanent magnet synchronous motor Library: Powertrain Blockset / Propulsion / Electric Motor Controllers

\section*{Description}

The Interior PM Controller block implements a torque-based, field-oriented controller for an internal permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Interior PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & d-axis current \\
\(i^{*}{ }_{d}\) & d-axis current command \\
\(i_{q}\) & q-axis current \\
\(i^{*}{ }_{q}\) & q-axis current command
\end{tabular}
\begin{tabular}{ll}
\(v_{d}\), & d -axis voltage \\
\(v_{d}{ }_{d}\) & d-axis voltage command \\
\(v_{q}\) & q-axis voltage \\
\(v^{*}{ }_{q}\) & q-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Interior PM Controller block.

\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:
- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed regulation time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(E V_{s f}\) & Bandwidth of the speed command filter \\
\(T_{s m}\) & Motion controller sample time \\
\(K_{s f}\) & Speed regulator time constant
\end{tabular}

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to calculate:
- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameters tab.

The gains for the state feedback are calculated using these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l}
Discrete forms of \\
characteristic equation
\end{tabular} & \(z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{\text {isa }}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z+\frac{-J_{p}+T_{s} b_{a}}{J_{p}}\) \\
\(\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right) z^{2}\) \\
\(-p_{1} p_{2} p_{3}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\(b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}\) \\
\hline \begin{tabular}{l}
Speed regulator \\
proportional gain
\end{tabular} \\
\begin{tabular}{l}
Speed regulator \\
integral gain
\end{tabular} \\
\begin{tabular}{l}
Speed regulator double \(=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}\) \\
integral gain
\end{tabular} \\
\(K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{i s a}\) & Speed regulator double integral gain \\
\(J_{p}\) & Motor inertia \\
\(T_{s m}\) & Motion controller sample time
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.
\[
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]
where:
\begin{tabular}{ll}
\(J_{p}\) & Motor inertia \\
\(T_{c m d f f}\) & Torque command feedforward \\
\(F_{s}\) & Static friction torque constant \\
\(F_{v}\) & Viscous friction torque constant \\
\(F_{s}\) & Static friction torque constant \\
\(\omega_{m}\) & Rotor speed
\end{tabular}

\section*{Torque Determination}

The block uses a maximum torque per ampere (MTPA) trajectory to calculate the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Electrical base speed transition into field weakening & \[
\omega_{\text {base }}=\frac{v_{\text {max }}}{\sqrt{\left(L_{q} i^{i}\right)^{2}+\left(L_{d}{ }^{i} d+\lambda_{p m}\right)^{2}}}
\] \\
\hline d-axis voltage & \(v_{d}=-\omega_{e} L_{q}{ }^{i} q_{\text {max }}\) \\
\hline q-axis voltage & \(v_{q}=\omega_{e}\left(L_{d} i_{d_{-}} \max +\lambda_{p m}\right)\) \\
\hline Maximum phase current & \(i_{\max }{ }^{2}=i_{d_{-} \max }^{2}+i_{q_{-}}^{2} \max\) \\
\hline Maximum line to neutral voltage & \[
v_{\max }=\frac{v_{b u s}}{\sqrt{3}}
\] \\
\hline d-axis phase current MTPA table & \[
\begin{aligned}
& I_{m}=\frac{2 T_{\max }}{3 P \lambda_{p m}} \\
& i_{d_{-} m t p a}=\frac{\lambda_{p m}}{4\left(L_{q}-L_{d}\right)}-\sqrt{\frac{\lambda_{p m}^{2}}{16\left(L_{q}-L_{d}\right)^{2}}+\frac{I_{m}^{2}}{2}}
\end{aligned}
\] \\
\hline q-axis phase current MTPA table & \(i_{q_{-} m t p a}=\sqrt{I_{m}^{2}-\left(i_{\text {mtpa }}\right)^{2}}\) \\
\hline Torque MTPA breakpoints & \(T_{\text {mtpa }}=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Field weakening, using the speed-based voltage limits & \[
\begin{aligned}
& \left(L_{q} i_{q}\right)^{2}+\left(L_{d} i_{d}+\lambda_{p m}\right)^{2} \leq \frac{v_{\max }^{2}}{\omega_{e}^{2}} \\
& i_{q}=\sqrt{i_{\text {max }}^{2}-i_{d}^{2}} \\
& \left(L_{d}^{2}-L_{q}^{2}\right) i_{d}^{2}+2 \lambda_{p m} L_{d} i_{d}+\lambda_{p m}+L_{q}^{2} i_{\max }^{2}-\frac{v_{\max }^{2}}{\omega_{e}^{2}}=0 \\
& i_{d f w}=\frac{-\lambda_{p m} L_{d}+\sqrt{\left(\lambda_{p m} L_{d}\right)^{2}-\left(L_{d}^{2}-L_{q}^{2}\right)\left(\lambda_{p m}^{2}+L_{q}^{2} i_{\max }^{2}-\frac{v_{\max }^{2}}{\omega_{e}^{2}}\right.}}{\left(L_{d}^{2}-L_{q}^{2}\right)} \\
& T_{f w}=\frac{3}{2} P\left(\lambda_{p m} i_{q f w}+\left(L_{d}-L_{q}\right) i_{d f w} i_{q f w}\right)
\end{aligned}
\] \\
\hline Current command & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(i_{\text {max }}\) & Maximum phase current \\
\(i_{d}\) & d-axis current \\
\(i_{q}\) & q-axis current \\
\(i_{d _ \text {max }}\) & Maximum d-axis phase current \\
\(i_{q _m a x}\) & Maximum q-axis phase current \\
\(i_{d _m t p a}\) & d-axis phase current MTPA table \\
\(i_{q _m t p a}\) & q-axis phase current MTPA table \\
\(I_{m}\) & Estimated maximum current \\
\(i_{d f w}\) & d-axis field weakening current \\
\(i_{q f w}\) & q-axis field weakening current
\end{tabular}
\begin{tabular}{ll}
\(\omega_{e}\) & Rotor electrical speed \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(v_{d}\) & d-axis voltage \\
\(v_{q}\) & q -axis voltage \\
\(v_{\max }\) & Maximum line to neutral voltage \\
\(v_{\text {bus }}\) & DC bus voltage \\
\(L_{d}\) & d -axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(P\) & Motor pole pairs \\
\(T_{f w}\) & Field weakening torque \\
\(T_{m t p a}\) & Torque MTPA breakpoints
\end{tabular}

\section*{Current Regulators}

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d -axis and q -axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:
- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of \(E V_{\text {current }}\).
The block implements these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l}
Motor voltage, in the rotor \\
reference frame
\end{tabular} & \(L_{d} \frac{d i_{d}}{d t}=v_{d}-R_{s} i_{d}+p \omega_{m} L_{q} i_{q}\) \\
& \(L_{q} \frac{d i_{q}}{d t}=v_{q}-R_{s} i_{q}-p \omega_{m} L_{d} i_{d}-p \omega_{m} \lambda_{p m}\) \\
\hline Current regulator gains & \(\omega_{b}=2 \pi E V_{\text {current }}\) \\
& \(K_{p_{-} d}=L_{d} \omega_{b}\) \\
\(K_{p_{-} q}=L_{q} \omega_{b}\) \\
& \(K_{i}=R_{s} \omega_{b}\) \\
\hline Transfer functions & \(\frac{i_{d}}{i_{d r e f}}=\frac{\omega_{b}}{s+\omega_{b}}\) \\
& \(\frac{i_{q}}{i_{q r e f}}=\frac{\omega_{b}}{s+\omega_{b}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E V_{\text {current }}\) & Current regulator bandwidth \\
\(i_{d}\) & d-axis current
\end{tabular}
\begin{tabular}{ll}
\(i_{q}\) & q -axis current \\
\(K_{p_{-} d}\) & Current regulator d-axis gain \\
\(K_{p_{-} q}\) & Current regulator q-axis gain \\
\(L_{d}\) & d -axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(R_{s}\) & Stator phase winding resistance \\
\(\omega_{m}\) & Rotor speed \\
\(\nu_{d}\) & d -axis voltage \\
\(\nu_{q}\) & q -axis voltage \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase \((a, b)\) quantities, quadrature twophase (\(\alpha, \beta\)) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l}
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\) \\
\(x_{\beta}=\)
\end{tabular}\(\quad \frac{2}{3} x_{a}-\quad \frac{\sqrt{3}}{3} x_{b} \quad-\frac{1}{3} x_{c}-\quad \frac{\sqrt{3}}{2} x_{C}\)
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(P\) & Motor pole pairs
\end{tabular}
\(\omega_{e} \quad\) Rotor electrical speed
\(\Theta_{e} \quad\) Rotor electrical angle
\(x \quad\) Phase current or voltage

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}\) \\
\hline Source power & \(S r c_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(M t r T r q_{\text {est }}=1.5 P\left[\lambda i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency load \\
to source
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline Power loss for tabulated efficiency & \(P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(v_{\text {bus }}\) & Estimated DC bus voltage \\
\(i_{a,}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{b u s}\) & Estimated DC bus current \\
Eff & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed \\
\(L_{q}\) & q -axis winding inductance \\
\(L_{d}\) & d-axis winding inductance \\
\(i_{q}\) & q -axis current \\
\(i_{d}\) & d-axis current \\
\(\lambda\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{l}
- \begin{tabular}{l}
Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation.
\end{tabular} \\
\\
\\
\\
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
\begin{tabular}{l}
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

\section*{SpdReq - Rotor speed command}
scalar
Rotor speed command, \(\omega^{*}{ }_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.

\section*{TrqCmd - Torque command \\ scalar}

Torque command, \(T^{*}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.

\section*{BusVolt - DC bus voltage}
scalar
DC bus voltage, \(v_{\text {bus }}\), in \(V\).

\section*{PhaseCurrA - Current}
scalar
Stator current phase a, \(i_{a}\), in A.

\section*{PhaseCurrB - Current}

\section*{scalar}

Stator current phase b, \(i_{b}\), in A.
SpdFdbk - Rotor speed
scalar
Rotor speed, \(\omega_{m}\), in rad/s.

\section*{PosFdbk - Rotor electrical angle}

\section*{scalar}

Rotor electrical angle, \(\Theta_{m}\), in rad.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{BusCurr - Bus current}
scalar
Estimated DC bus current, \(i_{\text {bus }}\), in A.

\section*{PhaseVolt - Stator terminal voltages}
array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Parameters}

\section*{Block Options}

\section*{Control Type - Select control}

Speed Control (default)|Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

\section*{Motor Parameters}

Stator resistance, Rs - Resistance
0.02 (default) | scalar

Stator phase winding resistance, \(R_{S^{\prime}}\), in ohm.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{l|l|l|}
\hline Parameter & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Stator resistance, Rs & D and Q axis integral gain, Ki & Current Controller \\
\hline \begin{tabular}{l}
D-axis inductance, \\
1.7e-3 (default) \(\mid\) scalar
\end{tabular} \\
\begin{tabular}{l}
D-axis winding inductance \\
Dependencies
\end{tabular}
\end{tabular}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
\hline D-axis inductance, Ld & Torque Breakpoints, T_mtpa & \begin{tabular}{l}
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa \\
D, q, and max current limits, \\
idq_limits
\end{tabular}
\end{tabular}

\section*{Q-axis inductance, Lq - Inductance \\ 3.2e-3 (default) | scalar}

Q-axis winding inductance, \(L_{q}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } Q-axis inductance, Lq & Parameter & Torque Breakpoints, T_mtpa \\
D-axis table data, id_mtpa & Id and Iq Calculation \\
Q-axis table data, iq_mtpa \\
& \begin{tabular}{l}
D, Q, and max current limits, \\
idq_limits
\end{tabular} & \\
\hline
\end{tabular}

Permanent magnet flux, lambda_pm - Flux
0.2205 (default) | scalar

Permanent magnet flux, \(\lambda_{p m}\), in Wb .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & \multicolumn{2}{|l|}{} \\
\cline { 2 - 3 } & Psed to Derive & Parameter \\
\hline \begin{tabular}{l}
Permanent magnet \\
flux, lambda_pm
\end{tabular} & Torque Breakpoints, T_mtpa & Id and Iq Calculation \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa \\
D, Q, and max current limits, \\
idq_limits
\end{tabular}\(\quad\).

Number of pole pairs, PolePairs - Poles
4 (default) | scalar
Motor pole pairs, \(P\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Number of pole pairs, \\
PolePairs
\end{tabular} & \begin{tabular}{l}
Torque Breakpoints, T_mtpa \\
D-axis table data, id_mtpa
\end{tabular} & Id and Iq Calculation \\
\begin{tabular}{ll}
Q-axis table data, iq_mtpa
\end{tabular} & \begin{tabular}{l}
D, Q, and max current limits, \\
idq_limits
\end{tabular} & \\
\hline
\end{tabular}

Physical inertia, viscous damping, static friction, Mechanical - Inertia, damping, friction
```

[0.0027, 4.924e-4, 0] (default)|vector

```

Mechanical properties of the motor:
- Motor inertia, \(F_{v}\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous friction torque constant, \(F_{v}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction torque constant, \(F_{s}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Speed Controller \\
\hline \begin{tabular}{l}
Physical inertia, \\
viscous damping, \\
static friction, \\
Mechanical
\end{tabular} & Proportional gain, ba & Angular gain, Ksa \\
Rotational gain, Kisa \\
Inertia compensation, Jcomp \\
Viscous damping \\
Compensation, Fv \\
Static friction, Fs
\end{tabular}\(\quad\).

\section*{Id and Iq Calculation}

\section*{Motor constraint - Motor constraint}

Maximum Torque (default)| Maximum Current
Motor constraint for MTPA control.

\section*{Maximum current, I_max - Current}

44 (default) | scalar

Maximum current, in A.

\section*{Dependencies}

To enable this parameter, set Motor constraint to Maximum Current.

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline T_maximum torque, & Torque Breakpoints, T_mtpa & Id and Iq Calculation \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa \\
& \begin{tabular}{l}
D, Q, and max current limits, \\
idq_limits
\end{tabular} & \\
\hline
\end{tabular}

Maximum torque, T_max - Torque
60 (default) | scalar
Maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Motor constraint to Maximum Torque.
This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\hline & Parameter & Tab \\
\hline \begin{tabular}{l}
Maximum torque, \\
T_max
\end{tabular} & Torque Breakpoints, T_mtpa & Id and Iq Calculation \\
& \begin{tabular}{l}
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa \\
D, Q, and max current limits, \\
idq_limits
\end{tabular} & \\
\hline
\end{tabular}

MTPA table breakpoints, bp - Number of breakpoints
10 (default) | scalar

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\hline & Parameter & To \\
\hline \begin{tabular}{l}
MTPA table \\
breakpoints, pb
\end{tabular} & \begin{tabular}{l}
Torque Breakpoints, T_mtpa \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa \\
D, Q, and max current limits, \\
idq_limits
\end{tabular} & Id andion \\
\hline
\end{tabular}

\section*{Calculate MTPA Table Data - Derive parameters}
button

Click to derive parameters.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate MPTA Table data, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Id and Iq Calculation tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Torque Breakpoints, T_mtpa & \(T_{\text {mtpa }}=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)\) & \begin{tabular}{l}
Maximum torque, T_max \\
MTPA table breakpoints, pb
\end{tabular} & Id and Iq Calculation \\
\hline D-axis table data, id_mtpa & \[
\begin{aligned}
& I_{m}=\frac{2 T_{\max }}{3 P \lambda_{p m}} \\
& i_{d_{-} m t p a}=\frac{\lambda_{p m}}{4\left(L_{q}-L_{d}\right)}-\sqrt{\frac{\lambda_{p m}^{2}}{16\left(L_{q}-L_{d}\right)^{2}}+}
\end{aligned}
\] & Permanent magnet flux, lambda_pm In-axis inductance, Rd & Motor Parameters \\
\hline Q-axis table data, iq_mtpa & \multirow[t]{2}{*}{\[
i_{q_{-} m t p a}=\sqrt{I_{m}^{2}-\left(i_{m t p a}\right)^{2}}
\]} & Q-axis inductance, Lq & \\
\hline D, Q, and max current limits, idq_limits & & Number of pole pairs, PolePairs & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(i_{\max }\) & Maximum phase current \\
\(i_{d}\) & d-axis current \\
\(i_{q}\) & q -axis current \\
\(i_{d _ \text {max }}\) & Maximum d-axis phase current \\
\(i_{q-m a x}\) & Maximum q-axis phase current \\
\(i_{d _m t p a}\) & d-axis phase current MTPA table \\
\(i_{q-m t p a}\) & q -axis phase current MTPA table \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(L_{d}\) & d-axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(P\) & Motor pole pairs \\
\(T_{m t p a}\) & Torque MTPA breakpoints \\
\(I_{m}\) & Estimated maximum current
\end{tabular}

\section*{Torque Breakpoints, T_mtpa - Derived}
\(\left[\begin{array}{lllllll}0 & 6.41323967543524 & 12.8472271930531 & 19.3221671098192 & 25.8572437875407\end{array}\right.\)
32.470259483526939 .17740852938245 .993182091148652 .930379967864
60.0001984561834] (default) | vector

Derived torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 4 } & Parameter & Id and Iq Calculation \\
T_mtpa Breakpoints, & Maximum torque, T_max \\
MTPA table breakpoints, pb
\end{tabular}\(\quad\)\begin{tabular}{l}
Permanent magnet flux, \\
lambda_pm \\
D-axis inductance, Ld \\
Q-axis inductance, Lq \\
Number of pole pairs, \\
PolePairs
\end{tabular}

D-axis table data, id_mtpa - Derived
[0-0.159333276810563-0.633258709677809-1.41005695027301-2.47173666500257 \(-3.79592548539108-5.35786489234899-7.13217478652462\)-9.09420364751938
-11.2209236729158] (default) | vector
Derived d-axis table data, in A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 4 } & Parameter & Tab \\
\hline \begin{tabular}{l}
D-axis table data, \\
id_mtpa
\end{tabular} & \begin{tabular}{l}
Maximum torque, T_max \\
MTPA table breakpoints, pb
\end{tabular} & Id and Iq Calculation \\
\hline & \begin{tabular}{l}
Permanent magnet flux, \\
lambda_pm \\
D-axis inductance, Ld \\
Q-axis inductance, Lq \\
Number of pole pairs, \\
PolePairs
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}
```

Q-axis table data, iq_mtpa - Derived
[0 4.84224935172196 9.66902512748937 14.4660510262181 19.2212063070062
23.9250934510846 28.5711892538614 33.1556572971289 37.6769488702032
42.1353166357157] (default)| vector

```

Derived q-axis table data, in A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\cline { 2 - 4 } & Parameter & Id and Iq Calculation \\
\hline \begin{tabular}{l}
D-axis table data, \\
id_mtpa
\end{tabular} & \begin{tabular}{l}
Maximum torque, T_max \\
MTPA table breakpoints, pb
\end{tabular} & Motor Parameters \\
\cline { 2 - 3 } & \begin{tabular}{l}
Permanent magnet flux, \\
lambda_pm
\end{tabular} & \\
& \begin{tabular}{l}
D-axis inductance, Ld \\
Q-axis inductance, Lq \\
Number of pole pairs, \\
PolePairs
\end{tabular} & \\
\hline
\end{tabular}

D, Q, and max current limits, idq_limits - Derived
[-11.2210468862948 42.135283822955343 .6038305205566] (default) | array
Derived d, q, and maximum current limits, in A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\hline & Parameter & Id and Iq Calculation \\
\hline \begin{tabular}{l}
D, Q, and max \\
current limits, \\
idq_limits
\end{tabular} & \begin{tabular}{l}
Maximum torque, T_max \\
MTPA table breakpoints, pb
\end{tabular} & \begin{tabular}{l}
Permanent magnet flux, \\
lambda_pm
\end{tabular} \\
\begin{tabular}{l}
D-axis inductance, Ld \\
Q-axis inductance, Lq \\
\begin{tabular}{l}
Number of pole pairs, \\
PolePairs
\end{tabular}
\end{tabular} & \\
\hline
\end{tabular}

\section*{Current Controller}

Bandwidth of the current regulator, EV_current - Bandwidth
200 (default) | scalar
Derived current regulator bandwidth, in Hz .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
current regulator, \\
EV_current
\end{tabular} & \begin{tabular}{l}
D-axis proportional gain, Kp_d \\
Q-axis proportional gain, Kp_q
\end{tabular} & Current Controller \\
\hline & \begin{tabular}{l}
D and Q axis proportional \\
gain, Ki
\end{tabular} & \\
\hline
\end{tabular}

Sample time for the torque control, Tst - Time
5e-5 (default) | scalar
Derived torque control sample time, in s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Sample time for the \\
torque control, Tst
\end{tabular} & \begin{tabular}{l}
Speed regulation time \\
constant, Ksf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Calculate Current Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Derived Parameter on Current Controller tab} & \multicolumn{2}{|l|}{Dependency} \\
\hline & Parameter & Tab \\
\hline D-axis proportional gain, Kp_d & Bandwidth of the current regulator, EV_current & Current Controller \\
\hline Q-axis proportional gain, Kp_q & Stator resistance, Rs & Motor Parameters \\
\hline \(D\) and \(\mathbf{Q}\) axis integral gain, \(\mathbf{K i}\) & & \\
\hline
\end{tabular}

D-axis proportional gain, Kp_d - Derived
2.1363 (default) | scalar

Derived d-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
D-axis proportional \\
gain, Kp_d
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\hline
\end{tabular}

Q-axis proportional gain, Kp_q - Derived
4.0212 (default) | scalar

Derived q-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\hline & Parameter & Current Controller \\
\hline \begin{tabular}{l}
Q-axis proportional \\
gain, Kp_q
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & \\
\hline
\end{tabular}

D and Q axis integral gain, Ki - Derived
25.1327 (default) | scalar

Derived d- and q- axis integral gains, in V/A•s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Motor Parameters \\
\hline \begin{tabular}{l}
D and Q axis integral \\
gain, Ki
\end{tabular} & Stator resistance, Rs & \\
\hline
\end{tabular}

\section*{Speed Controller}

Bandwidth of the motion controller, EV_motion - Bandwidth [20, 4, 0.8] (default) | vector

Motion controller bandwidth, in Hz . Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to \(1 / 5\) the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [2040.8].

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
motion controller, \\
EV_motion
\end{tabular} & Proportional gain, ba & Speed Controller \\
& \begin{tabular}{l}
Angular gain, Ksa \\
Rotational gain, Kisa
\end{tabular} & \\
\hline
\end{tabular}

Bandwidth of the state filter, EV_sf - Bandwidth 200 (default) | scalar

State filter bandwidth, in Hz .

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
state filter, EV_sf
\end{tabular} & \begin{tabular}{l}
Speed regulation time \\
constant, Ksf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Calculate Speed Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Derived Parameter on Speed Controller tab } & \begin{tabular}{l}
Depends On \\
\hline
\end{tabular} & \begin{tabular}{l}
Parameter
\end{tabular} \\
\hline \begin{tabular}{l}
Proportional \\
gain, ba
\end{tabular} & \(b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}\) & \begin{tabular}{l}
Bandwidth of the \\
motion controller, \\
EV_motion \\
Bandwidth of the \\
state filter, EV_sf
\end{tabular} & Speed Controller \\
\hline \begin{tabular}{l}
Angular gain, \\
Ksa
\end{tabular} & \begin{tabular}{l}
\(K_{s a}\) \\
\(=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}\)
\end{tabular} & \begin{tabular}{l}
Sample time for \\
the torque \\
control, Tst
\end{tabular} & Current Controller \\
\hline \begin{tabular}{l}
Rotational \\
gain, Kisa
\end{tabular} & \(K_{i s a}\) & \begin{tabular}{l}
Physical inertia, \\
viscous damping, \\
static friction,
\end{tabular} & Motor Parameters \\
\hline\(=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s / 2}^{3} \text { Mechanical }}{T_{s m}^{3}}\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Derived Parameter on Speed Controller tab } & Depends On \\
\cline { 3 - 4 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Speed \\
regulation \\
time constant, \\
Ksf
\end{tabular} & \(K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}\) & & \\
\hline \begin{tabular}{l}
Inertia \\
compensation, \\
Jcomp
\end{tabular} & \(J_{c o m p}=J_{p}\) & \begin{tabular}{l}
Physical inertia, \\
viscous damping, \\
static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline \begin{tabular}{l}
Viscous \\
damping \\
compensation, \\
Fv
\end{tabular} & \(F_{v}\) & \\
\hline \begin{tabular}{l}
Static friction, \\
Fs
\end{tabular} & \(F_{s}\) & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{i s a}\) & Speed regulator double integral gain \\
\(K_{s f}\) & Speed regulator time constant \\
\(J_{p}\) & Motor inertia \\
\(E V_{s f}\) & State filter bandwidth \\
\(E V_{m o t i o n ~}\) & Motion controller bandwidth
\end{tabular}

\section*{Proportional gain, ba - Derived}
3.7477 (default) | scalar

Derived proportional gain, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline & Motor Parameters \\
\hline & \begin{tabular}{l}
Proportional gain, ba \\
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular}
\end{tabular}

\section*{Angular gain, Ksa - Derived}
94.0877 (default) | scalar

Derived angular gain, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\hline Angular gain, Ksa & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Rotational gain, Kisa - Derived \\ 381.7822 (default) | scalar}

Derived rotational gain, in \(\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\hline Rotational gain, Kisa & \begin{tabular}{l}
Parameter \\
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Tab \\
\hline \begin{tabular}{l}
Botor Parameters \\
Condroller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Speed regulation time constant, Ksf - Derived
1217.9727 (default) | scalar

Derived speed regulation time constant, in \(1 / \mathrm{s}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Speed regulation \\
time constant, Ksf
\end{tabular} & \begin{tabular}{l}
Sample time for the torque \\
control, Tst
\end{tabular} & Current Controller \\
\hline \begin{tabular}{l}
Bandwidth of the state filter, \\
EV_sf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Inertia compensation, Jcomp - Derived
0.025 (default) | scalar

Derived inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Motor Parameters \\
\hline \begin{tabular}{l}
Inertia \\
compensation, \\
Jcomp
\end{tabular} & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & \\
\hline
\end{tabular}

Viscous damping compensation, Fv - Derived
0 (default) | scalar

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Viscous damping \\
compensation, Fv
\end{tabular} & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

Static friction, Fs - Derived
0 (default) | scalar
Derived static friction, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } Static friction, Fs & Parameter & Motor Parameters \\
\begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & \\
\hline
\end{tabular}

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques. \\
- \\
Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation. \\
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
& \begin{tabular}{l}
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Overall inverter efficiency, eff - Constant}

98 (default) | scalar
Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints
[0 200 400 600 800 1000] (default)| 1-by-M vector

```

Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints}
[0 255075 100] (default)| 1-by-N vector
Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Corresponding losses, losses_table - Table
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550
700;100 300 500 700 900;100 350 600 850 1100] (default)|M-by-N array

```

Array of values for electrical losses as a function of \(M\) speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints
[200 400 600 800 1000] (default)| 1-by-M vector

```

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Vector of torques (T) for tabulated efficiency, T_eff_bp - Breakpoints}
[25 5075 100] (default)| 1-by-N vector
Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.
```

Corresponding efficiency, efficiency_table - Table

```
[96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7 99.8;99.2 99.6 99.7 99.8] (default)| M-by-N array

Array of efficiency as a function of M speeds and N torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/August 1994, pp. 920-926.
[3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on ZSource Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 4250.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Interior PMSM | Flux-Based PM Controller | IM Controller | Surface Mount PM Controller
Introduced in R2017a

\section*{Flux-Based PMSM}

Flux-based permanent magnet synchronous motor
Library: Powertrain Blockset / Propulsion / Electric Motors and Inverters

\section*{Description}

The Flux-Based PMSM block implements a flux-based three-phase permanent magnet synchronous motor (PMSM) with a tabular-based electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Flux-based motor models take into account magnetic saturation and iron losses. To calculate the magnetic saturation and iron loss, the Flux-Based PMSM block uses the inverse of the flux linkages. To obtain the block parameters, you can use finite-element analysis (FEA) or measure phase voltages using a dynamometer.

By default, the block sets the Simulation Type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and singleprecision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

To enable power loss calculations suitable for code generation targets that limit memory, select Enable memory optimized 2D LUT.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements equations that are expressed in a stationary rotor reference (dq) frame. The \(d\) axis aligns with the \(a\)-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equation \\
\hline\(q\) - and \(d\)-axis voltage & \(v_{d}=\frac{d \psi_{d}}{d t}+R_{s} i_{d}-\omega_{e} \psi_{q}\) \\
& \(v_{q}=\frac{d \psi_{q}}{d t}+R_{s} i_{q}+\omega_{e} \psi_{d}\) \\
\hline\(q\) - and \(d\)-axis current & \(i_{d}=f\left(\psi_{d}, \psi_{q}\right)\) \\
& \(i_{q}=g\left(\psi_{d}, \psi_{q}\right)\) \\
\hline Electromechanical torque & \(T_{e}=1.5 P\left[\psi_{d} i_{q}-\psi_{q} i_{d}\right]\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{d a}\) & dq stator electrical angle with respect to the rotor a-axis \\
\(R_{s}, R_{r}\) & Resistance of the stator and rotor windings, respectively \\
\(i_{q}, i_{d}\) & \(q\) - and \(d\)-axis current, respectively \\
\(v_{q}, v_{d}\) & \(q\) - and \(d\)-axis voltage, respectively \\
\(\Psi_{q}, \Psi_{d}\) & \(q\) - and \(d\)-axis magnet flux, respectively \\
\(P\) & Number of pole pairs \\
\(T_{e}\) & Electromagnetic torque
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase (\(a, b\)) quantities, quadrature twophase (\(\alpha, \beta\)) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l}
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\quad \frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{c}\) \\
\(x_{\beta}=\) \\
\hline
\end{tabular}\(\frac{\sqrt{3}}{2} x_{b}-\quad \frac{\sqrt{3}}{2} x_{c}\)
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(P\) & Motor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Mechanical System}

The rotor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\begin{tabular}{ll}
\(J\) & Combined inertia of rotor and load \\
\(F\) & Combined viscous friction of rotor and load \\
\(\theta_{m}\) & Rotor mechanical angular position \\
\(T_{m}\) & Rotor shaft torque \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Combined rotor and load friction torque \\
\(\omega_{m}\) & Rotor mechanical speed
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=-\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{aligned}
& P_{b u s}=\quad v_{a n} i_{a}+v_{b n} i_{b} \\
& +v_{c n} i_{c}
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrElec Loss & Resistive power loss & \(P_{\text {elec }}\) & \[
\begin{aligned}
& P_{\text {elec }}=\quad-\frac{3}{2}\left(R_{s} i_{s d}^{2}\right. \\
& \left.+R_{S} i_{s q}^{2}\right)
\end{aligned}
\] \\
\hline & & PwrMech Loss & Mechanical power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When Port Configuration is set to Torque:
\[
\begin{aligned}
& P_{\text {mech }}=- \\
& \left(\omega_{m}^{2} F+\left|\omega_{m}\right| T_{f}\right)
\end{aligned}
\] \\
When Port Configuration is set to Speed:
\[
P_{\text {mech }}=0
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrMtrS tored & Stored motor power & \(P_{\text {str }}\) & \[
\begin{aligned}
P_{\text {str }} & =P_{\text {bus }}+P_{\text {mot }}+ \\
P_{\text {elec }} & +P_{\text {mech }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(R_{s} \quad\) Stator resistance
\begin{tabular}{ll}
\(i_{a}, i_{b}, i_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}\), and c current \\
\(i_{s q}, i_{s d}\) & Stator q - and d-axis currents \\
\(v_{a n}, v_{b n}, v_{c n}\) & Stator phase a, b, and c voltage \\
\(\omega_{m}\) & Angular mechanical velocity of the rotor \\
\(F\) & Combined motor and load viscous damping \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Combined motor and load friction torque
\end{tabular}

\section*{Lookup Table Memory Optimization}

The data for the Corresponding d-axis current, id and Corresponding q-axis current, iq lookup tables are functions of the \(d\) - and \(q\)-axis flux.

To enable current calculations suitable for code generation targets that limit memory, select Enable memory optimized 2D LUT. The block uses linear interpolation to optimize the current lookup table values for code generation. This table summarizes the optimization implementation.
\begin{tabular}{|l|l|}
\hline Use Case & Implementation \\
\hline \begin{tabular}{l}
\(d\) - and \(q\)-axis flux aligns with the lookup table \\
breakpoint values.
\end{tabular} & \begin{tabular}{l}
Memory-optimized current is current lookup \\
table value at intersection of flux values.
\end{tabular} \\
\hline \begin{tabular}{l}
\(d\) - and \(q\)-axis flux does not align with the lookup \\
table breakpoint values, but is within range.
\end{tabular} & \begin{tabular}{l}
Memory-optimized current is linear \\
interpolation between corresponding flux \\
values.
\end{tabular} \\
\hline \begin{tabular}{l}
\(d\) - and \(q\)-axis flux does not align with the lookup \\
table breakpoint values, and is out of range.
\end{tabular} & \begin{tabular}{l}
Cannot compute an memory-optimized \\
current. Block uses extrapolated data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Extrapolation}

The lookup tables optimized for code generation do not support extrapolation for data that is out of range. However, you can include pre-calculated extrapolation values in the power loss lookup table by selecting Specify Extrapolation.

The block uses the endpoint parameters to resize the table data.

\section*{Ports}

\section*{Input}

\section*{LdTrq - Rotor shaft torque}
scalar
Rotor shaft input torque, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque for the Port Configuration parameter.

\section*{Spd - Rotor shaft speed \\ scalar}

Angular velocity of the rotor, \(\omega_{\mathrm{m}}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed for the Port Configuration parameter.

\section*{PhaseVolt - Stator terminal voltages}

1-by-3 array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Dependencies}

To create this port, select Speed or Torque for the Port Configuration parameter.

\section*{Output}

Info - Bus signal
bus
The bus signal contains these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{IaStator} & Stator phase current A & \(i_{a}\) & A \\
\hline \multicolumn{3}{|l|}{IbStator} & Stator phase current B & \(i_{b}\) & A \\
\hline \multicolumn{3}{|l|}{IcStator} & Stator phase current C & \(i_{c}\) & A \\
\hline \multicolumn{3}{|l|}{IdSync} & Direct axis current & \(i_{d}\) & A \\
\hline \multicolumn{3}{|l|}{IqSync} & Quadrature axis current & \(i_{q}\) & A \\
\hline \multicolumn{3}{|l|}{VdSync} & Direct axis voltage & \(v_{d}\) & V \\
\hline \multicolumn{3}{|l|}{VqSync} & Quadrature axis voltage & \(v_{q}\) & V \\
\hline \multicolumn{3}{|l|}{MtrSpd} & Angular mechanical velocity of the rotor & \(\omega_{m}\) & rad/s \\
\hline \multicolumn{3}{|l|}{MtrPos} & Rotor mechanical angular position & \(\theta_{m}\) & rad \\
\hline \multicolumn{3}{|l|}{MtrTrq} & Electromagnetic torque & \(T_{e}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multirow[t]{5}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & W \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & W \\
\hline & \multirow[t]{2}{*}{PwrNotTrns frd} & PwrElecLoss & Resistive power loss & \(P_{\text {elec }}\) & W \\
\hline & & PwrMechLoss & Mechanical power loss & \(P_{\text {mech }}\) & W \\
\hline & PwrStored & PwrMtrStored & Stored motor power & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

1-by-3 array
Phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Speed for the Port configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Port configuration parameter.

\section*{Parameters}

Block Options
Simulation type - Select simulation type
Continuous (default)|Discrete
By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample time, Ts - Sample time for discrete integration}
0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Port Configuration - Select port configuration}

Torque (default) | Speed
This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

Enable memory optimized 2D LUT - Selection
off (default) | on
Enable generation of optimized lookup tables, suitable code generation targets that limit memory.

\section*{Vector of d-axis flux, flux_d - Flux breakpoints}

1-by-M vector
\(d\)-axis flux, \(\Psi_{d}\), breakpoints, in Wb.
Resample storage size for flux_d, n1 - Flux bit size
2 (default) | 4 | 8 | 16 | 32 | 64 | 128 | 256
Flux breakpoint storage size, n1, dimensionless. The block resamples the Corresponding d-axis current, id and Corresponding q-axis current, iq data based on the storage size.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT.
```

Vector of q-axis flux, flux_q - Flux breakpoints
1-by-N vector
q-axis flux, }\mp@subsup{\Psi}{q}{}\mathrm{ , breakpoints, in Wb.

```

Resample storage size for flux_q, n2 - Flux bit size 2 (default) | 4 | 8 | 16 | 32 | 64 | 128 | 256

Flux breakpoint storage size, \(n 2\), dimensionless. The block resamples the Corresponding d-axis current, id and Corresponding \(\mathbf{q}\)-axis current, iq data based on the storage size.

Dependencies
To create this parameter, select Enable memory optimized 2D LUT.
Corresponding d-axis current, id - 2D lookup table
M-by-N array
Array of values for \(d\)-axis current, \(i_{d}\), as a function of \(\mathrm{M} d\)-fluxes, \(\Psi_{d}\), and \(\mathrm{N} q\)-fluxes, \(\Psi_{q}\), in A. Each value specifies the current for a specific combination of \(d\) - and \(q\)-axis flux. The array size must match the dimensions defined by the flux vectors.

If you set Enable memory optimized 2D LUT, the block converts the data to single precision.
Corresponding \(q\)-axis current, iq - 2D lookup table
M-by-N array
Array of values for \(q\)-axis current, \(i_{d}\), as a function of \(\mathrm{M} d\)-fluxes, \(\Psi_{d}\), and \(\mathrm{N} q\)-fluxes, \(\Psi_{q}\), in A. Each value specifies the current for a specific combination of \(d\) - and \(q\)-axis flux. The array size must match the dimensions defined by the flux vectors.

If you set Enable memory optimized 2D LUT, the block converts the data to single precision.
flux_d max endpoint, u1max - Flux breakpoint
0.22457 (default) | scalar

Flux breakpoint maximum extrapolation endpoint, u1 max, in Wb.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
flux_d min endpoint, ulmin - Flux breakpoint
-0. 22607 (default) | scalar
Flux breakpoint minimum extrapolation endpoint, u1min, in Wb.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
flux_q max endpoint, u2max - Flux breakpoint
0.42959 (default) | scalar

Flux breakpoint maximum extrapolation endpoint, u2max, in Wb.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
flux_q min endpoint, u2min - Flux breakpoint
-0.4296 (default) | scalar

Flux breakpoint minimum extrapolation endpoint, u2min, in Wb.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.

\section*{Stator phase resistance, Rs - Resistance}
0.02 (default) | scalar

Stator phase resistance, \(R_{s}\), in ohm.
Number of pole pairs, \(\mathbf{P}\) - Pole pairs
4 (default) | scalar
Motor pole pairs, \(P\).
Initial flux, fluxdq0 - Flux
[0 0] (default)|vector
Initial \(d\) - and \(q\)-axis flux, \(\Psi_{q 0}\) and \(\Psi_{d 0}\), in Wb .
Initial mechanical position, theta_init - Angle
0 (default) | scalar
Initial rotor angular position, \(\theta_{m 0}\), in rad.
Initial mechanical speed, omega_init - Speed
0 (default) | scalar
Initial angular velocity of the rotor, \(\omega_{m 0}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.
Physical inertia, viscous damping, and static friction, mechanical - Inertia, damping, friction
[0.0027, 4.924e-4, 0] (default) | vector
Mechanical properties of the rotor:
- Inertia, \(J\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction, \(T_{f}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{References}
[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." IEEE Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.
[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.
[3] Ottosson, J., M. Alakula. "A compact field weakening controller implementation." International Symposium on Power Electronics, Electrical Drives, Automation and Motion, July, 2006.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PM Controller | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PMSM

\section*{Topics}
"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

\section*{Flux-Based PM Controller}

Controller for a flux-based permanent magnet synchronous motor
Library:

\section*{Description}

The Flux Based PM Controller block implements a flux-based, field-oriented controller for an interior permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Flux Based PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations using these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & \(d\)-axis current \\
\(i^{*}{ }_{d}\) & \(d\)-axis current command \\
\(i_{q}\) & \(q\)-axis current \\
\(i^{*}{ }_{q}\) & \(q\)-axis current command
\end{tabular}
\begin{tabular}{ll}
\(v_{d}\), & \(d\)-axis voltage \\
\(v_{d}^{*}\) & \(d\)-axis voltage command \\
\(v_{q}\) & \(q\)-axis voltage \\
\(v^{*}{ }_{q}\) & \(q\)-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Flux Based PM Controller block.

\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \Pi E V_{s f}\right)}{T_{s m}}
\]

The equations use these variables.
\(E V_{s f} \quad\) Bandwidth of the speed command filter
\(T_{s m} \quad\) Motion controller sample time
\(K_{s f} \quad\) Speed regulator time constant

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. To filter the speed, the block uses a proportional integral (PI) controller.
\[
T_{c m d}=K p_{\omega}\left(\omega_{m}^{*}-\omega_{m}\right)+K i_{\omega} \frac{z T_{s m}}{z-1}\left(\omega_{m}^{*}-\omega_{m}\right)
\]

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(\omega^{*}{ }_{m}\) & Rotor speed command \\
\(T_{c m d}\) & Torque command \\
\(K p_{\omega}\) & Speed regulator proportional gain \\
\(K i_{\omega}\) & Speed regulator integral gain \\
\(T_{s m}\) & Speed regulator sample rate
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

The feedforward torque command uses this equation.
\[
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]
where:
\begin{tabular}{ll}
\(J_{p}\) & Rotor inertia \\
\(T_{c m d f f}\) & Torque command feedforward \\
\(F_{s}\) & Static friction torque constant \\
\(F_{v}\) & Viscous friction torque constant \\
\(F_{s}\) & Static friction torque constant \\
\(\omega_{m}\) & Rotor speed
\end{tabular}

\section*{Current Command}

The block uses lookup tables to determine the \(d\)-axis and \(q\)-axis current commands. The lookup tables are functions of mechanical speed and torque. To determine the lookup tables, you can use an external finite element analysis (FEA) models or dynamometer test results.
\[
\begin{aligned}
& i_{\text {dref }}=f\left(\left|\omega_{m}\right|,\left|T_{\text {ref }}\right|\right) \\
& i_{\text {qref }}=\operatorname{sign}\left(T_{\text {ref }}\right) * f\left(\left|\omega_{m}\right|,\left|T_{\text {ref }}\right|\right)
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(T_{\text {ref }}\) & Torque command \\
\(i_{\text {dref },} i_{\text {qref }}\) & \(d\) - and \(q\)-axis reference current, respectively
\end{tabular}

\section*{Voltage Command}

The block uses these equations to calculate the voltage in the motor reference frame.
\[
\begin{aligned}
& v_{d}=\frac{d \psi_{d}}{d t}+R_{s} i_{d}-\omega_{e} \psi_{q} \\
& v_{q}=\frac{d \psi_{q}}{d t}+R_{s} i_{q}+\omega_{e} \psi_{d} \\
& \frac{d \psi_{d}}{d t}+R_{s} i_{d}=K p_{d}\left(i_{d}^{*}-i_{d}\right)+K i_{d} \frac{z T_{s t}}{z-1}\left(i_{d}^{*}-i_{d}\right) \\
& \frac{d \psi_{q}}{d t}+R_{s} i_{q}=K p_{q}\left(i_{q}^{*}-i_{q}\right)+K i_{q} \frac{z T_{s t}}{z-1}\left(i_{q}^{*}-i_{q}\right) \\
& v_{d}=K p_{i}\left(i_{d}^{*}-i_{d}\right)+K i_{d} \frac{z T_{s t}}{z-1}\left(i_{d}^{*}-i_{d}\right)+\omega_{e} \psi_{q} \\
& v_{q}=K p_{i}\left(i_{q}^{*}-i_{q}\right)+K i_{q} \frac{z T_{s t}}{z-1}\left(i_{q}^{*}-i_{q}\right)-\omega_{e} \psi_{d} \\
& \psi_{q}=f\left(i_{d}, i_{q}\right) \\
& \psi_{d}=f\left(i_{d}, i_{q}\right)
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(\omega_{e}\) & Rotor electrical speed \\
\(R_{s}, R_{r}\) & Resistance of the stator and rotor windings, respectively \\
\(i_{q}, i_{d}\) & \(q\) - and \(d\)-axis current, respectively \\
\(v_{q}, v_{d}\) & \(q\) - and \(d\)-axis voltage, respectively \\
\(\Psi_{q}, \Psi_{d}\) & \(q\) - and \(d\)-axis magnet flux, respectively \\
\(T_{s t}\) & Current regulator sample rate \\
\(K i_{d}, K i_{q}\) & \(d\) - and \(q\) - axis integral gain, respectively \\
\(K p_{d}, K p_{q}\) & \(d\) - and \(q\) - axis proportional gain, respectively
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase (\(a, b\)) quantities, quadrature twophase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l}
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\quad \frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{c}\) \\
\(x_{\beta}=\)
\end{tabular}\(\frac{\sqrt{3}}{2} x_{b}-\quad \frac{\sqrt{3}}{2} x_{c}\)
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(P\) & Rotor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge.

The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}\) \\
\hline Source power & \(S r c_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(T_{e}=1.5 P\left[\psi_{d} i_{q}-\psi_{q} i_{d}\right]\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency load \\
to source
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline Power loss for tabulated efficiency & \(P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(v_{b u s}\) & Estimated DC bus voltage \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{b u s}\) & Estimated DC bus current \\
\(E f f\) & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed \\
\(L_{q}, L_{d}\) & \(q\) - and \(d\)-axis winding inductance, respectively \\
\(\Psi_{q}, \Psi_{d}\) & \(q\) - and \(d\)-axis magnet flux, respectively \\
\(i_{q}, i_{d}\) & \(q\) - and \(d\)-axis current, respectively \\
\(\lambda\) & Permanent magnet flux linkage \\
\(P\) & Rotor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{l}
- Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l}
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

SpdReq - Rotor speed command
scalar

Rotor speed command, \(\omega^{*}{ }_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.

\section*{TrqCmd - Torque command scalar}

Torque command, \(T^{*}\), in \(N \cdot m\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.

\section*{BusVolt - DC bus voltage}
scalar
DC bus voltage, \(v_{\text {bus }}\), in V.
PhaseCurrA - Current
scalar
Stator current phase a, \(i_{a}\), in A.
PhaseCurrB - Current
scalar
Stator current phase \(\mathrm{b}, i_{b}\), in A .

\section*{SpdFdbk - Rotor speed \\ scalar}

Rotor speed, \(\omega_{m}\), in rad/s.

\section*{PosFdbk - Rotor electrical angle}
scalar
Rotor electrical angle, \(\Theta_{m}\), in rad.

\section*{Output}

Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

BusCurr - Bus current
scalar

Estimated DC bus current, \(i_{\text {bus }}\), in A.

\section*{PhaseVolt - Stator terminal voltages}
array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Parameters}

\section*{Block Options}

\section*{Control Type - Select control}

Torque Control (default)| Speed Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

Motor Parameters
Number of pole pairs, PolePairs - Poles
4 (default) | scalar
Motor pole pairs, \(P\).
Vector of d-axis current breakpoints, id_index - Current vector
\(d\)-axis current, \(i_{d-i n d e x}\), in A.
Vector of \(q\)-axis current breakpoints, iq_index - current vector
\(q\)-axis current, \(i_{q_{-} \text {index }}\), in A.
Corresponding d-axis flux, lambda_d - Flux
vector
\(d\)-axis flux, \(\lambda_{d}\), in Wb .
Corresponding q-axis flux, lambda_q - Flux vector
\(q\)-axis flux, \(\lambda_{q}\), in Wb .

\section*{Current Controller}

Sample time for the torque control, Tst - Time
le-4 (default) | scalar
Torque control sample time, \(T_{s t}\), in s.

D-axis proportional gain, Kp_d - Gain 2.4056 (default) | scalar
\(d\)-axis proportional gain, \(K p_{d}\), in V/A.
Q-axis proportional gain, Kp_q - Gain
2.4056 (default) | scalar
\(q\)-axis proportional gain, \(K p_{q}\), in V/A.
D-axis integral gain, Ki_d - Gain
192.45 (default) | scalar
\(d\)-axis integral gain, \(K i_{d}\), in V/A•s.
Q-axis integral gain, Ki_q - Gain
192.45 (default)| scalar
\(q\) - axis integral gain, \(K i_{q}\), in V/A•s.
Vector of speed breakpoints, wpb - Breakpoints
vector
Speed breakpoints, \(\omega_{b p}\), in rad/s.
Vector of torque breakpoints, tpb - Breakpoints
vector
Torque breakpoints, \(T_{b p}\), in \(N \cdot \mathrm{~m}\).
Corresponding d-axis current reference, id_ref - Current vector
\(d\)-axis reference current, \(i_{d r e f}\), in A.
Corresponding \(q\)-axis current reference, iq_ref - Current vector
\(q\)-axis reference current, \(i_{\text {qref }}\), in A.

\section*{Speed Controller}

Speed regulation time constant, Ksf - Time
```

. 1 (default)| scalar

```

Speed regulator time constant, \(K_{s f}\), in \(1 / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.
Proportional gain, Kp_w - Gain
0.40475 (default)|scalar

Proportional gain, \(K p_{\omega}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.
Integral gain, Ki_w - Gain
10.1615 (default) | scalar

Integral gain, \(K i_{\omega} \mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.

\section*{Inertia compensation, Jcomp - Inertia}
0.0027 (default)| scalar

Inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.
Static friction, Fs - Friction
0 (default) | scalar
Static friction, in \(N \cdot m\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.

\section*{Viscous damping compensation, Fv-Dampint}
0.0004924 (default)| scalar

Viscous damping compensation, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{l}
- \begin{tabular}{l}
Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation. \\
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
\\
\\
\\
\\
\\
\\
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Overall inverter efficiency, eff - Constant}

98 (default) | scalar
Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints
[0 200 400 600 800 1000] (default)| 1-by-M vector

```

Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints
[0 255075 100] (default)| 1-by-N vector

```

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Corresponding losses, losses_table - Table
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550
700;100 300 500 700 900;100 350 600 850 1100] (default)|M-by-N array

```

Array of values for electrical losses as a function of \(M\) speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints
[200 400600800 1000] (default) | 1-by-M vector
Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.
Vector of torques (\(T\)) for tabulated efficiency, T_eff_bp - Breakpoints
[25 5075 100] (default) | 1-by-N vector
Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table - Table}
[96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7
99.8;99.2 99.6 99.7 99.8] (default)| M-by-N array

Array of efficiency as a function of \(M\) speeds and \(N\) torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." IEEE Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.
[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.
[3] Ottosson, J., M. Alakula. "A compact field weakening controller implementation." International Symposium on Power Electronics, Electrical Drives, Automation and Motion, July, 2006.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PMSM | IM Controller | Interior PM Controller | Surface Mount PM Controller
Topics
"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

\section*{Induction Motor}

Three-phase induction motor
\begin{tabular}{ll}
Library: & Powertrain Blockset / Propulsion / Electric Motors and \\
& Inverters \\
& Motor Control Blockset / Electrical Systems / Motors
\end{tabular}

\section*{Description}

The Induction Motor block implements a three-phase induction motor. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Note The block parameters use per-phase values of a star-equivalent induction motor.

By default, the block sets the Simulation Type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and singleprecision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The daxis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations to calculate the electrical speed (\(\omega_{\text {em }}\)) and slip speed (\(\omega_{\text {slip }}\)).
\[
\begin{aligned}
& \omega_{e m}=P \omega_{m} \\
& \omega_{\text {slip }}=\omega_{\text {syn }}-\omega_{e m}
\end{aligned}
\]

To calculate the dq rotor electrical speed with respect to the rotor A-axis (\(d A\)), the block uses the difference between the stator a-axis (da) speed and slip speed:
\[
\omega_{d A}=\omega_{d a}-\omega_{e m}
\]

To simplify the equations for the flux, voltage, and current transformations, the block uses a stationary reference frame:
\[
\begin{aligned}
& \omega_{d a}=0 \\
& \omega_{d A}=-\omega_{e m}
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline Calculation & Equation \\
\hline \multirow[t]{2}{*}{Flux} & \[
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{l}
\lambda_{s d} \\
\lambda_{s q}
\end{array}\right] & =\left[\begin{array}{ll}
v_{s d} \\
v_{s q}
\end{array}\right]-R_{s}\left[\begin{array}{ll}
i_{s d} \\
i_{s q}
\end{array}\right]-\omega_{d a}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{s d} \\
\lambda_{s q}
\end{array}\right] \\
\frac{d}{d t}\left[\begin{array}{l}
\lambda_{r d} \\
\lambda_{r q}
\end{array}\right]= & {\left[\begin{array}{l}
v_{r d} \\
v_{r q}
\end{array}\right]-R_{r}\left[\begin{array}{ll}
i_{r d} \\
i_{r q}
\end{array}\right]-\omega_{d A}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{r d} \\
\lambda_{r q}
\end{array}\right] }
\end{aligned}
\] \\
\hline & \[
\left[\begin{array}{c}
\lambda_{s d} \\
\lambda_{s q} \\
\lambda_{r d} \\
\lambda_{r q}
\end{array}\right]=\left[\begin{array}{cccc}
L_{s} & 0 & L_{m} & 0 \\
0 & L_{s} & 0 & L_{m} \\
L_{m} & 0 & L_{r} & 0 \\
0 & L_{m} & 0 & L_{r}
\end{array}\right]\left[\begin{array}{c}
i_{s d} \\
i_{s q} \\
i_{r d} \\
i_{r q} \\
i_{r q}
\end{array}\right]
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Calculation & Equation \\
\hline Current & \(\left[\begin{array}{l}i_{s d} \\ i_{s q} \\ i_{r d} \\ i_{r q}\end{array}\right]=\left(\begin{array}{l}1 \\ L_{m}^{2}-L_{r} L_{s}\end{array}\right]\left[\begin{array}{cccc}-L_{r} & 0 & L_{m} & 0 \\ 0 & -L_{r} & 0 & L_{m} \\ L_{m} & 0 & -L_{s} & 0 \\ 0 & L_{m} & 0 & -L_{s}\end{array}\right]\left[\begin{array}{l}\lambda_{s d} \\ \lambda_{s q} \\ \lambda_{r d} \\ \lambda_{r q}\end{array}\right]\) \\
\hline Inductance & \[
\begin{aligned}
& L_{s}=L_{l s}+L_{m} \\
& L_{r}=L_{l r}+L_{m}
\end{aligned}
\] \\
\hline Electromagnetic torque & \(T_{e}=P L_{m}\left(i_{s q} i_{r d}-i_{s d} i_{r q}\right)\) \\
\hline Power invariant dq transformation to ensure that the dq and three phase powers are equal & \[
\begin{aligned}
& {\left[\begin{array}{l}
v_{s d} \\
v_{s q}
\end{array}\right]=\sqrt{\frac{2}{3}}} \\
& {\left[\begin{array}{lll}
\cos \left(\Theta_{d a}\right) & \cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & \cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right) \\
-\sin \left(\Theta_{d a}\right) & -\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right)
\end{array}\right]\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]} \\
& {\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{cc}
\cos \left(\Theta_{d a}\right) & -\sin \left(\Theta_{d a}\right) \\
\cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right) \\
\cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right) & -\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right)
\end{array}\right]\left[\begin{array}{l}
i_{s d} \\
i_{s q}
\end{array}\right]}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Angular velocity of the rotor (rad/s) \\
\(\omega_{e m}\) & Electrical rotor speed (rad/s) \\
\(\omega_{s l i p}\) & Electrical rotor slip speed (rad/s) \\
\(\omega_{s y n}\) & Synchronous rotor speed (rad/s) \\
\(\omega_{d a}\) & dq stator electrical speed with respect to the rotor a-axis (rad/s) \\
\(\omega_{d A}\) & dq stator electrical speed with respect to the rotor A-axis (rad/s) \\
\(\Theta_{d a}\) & dq stator electrical angle with respect to the rotor a-axis (rad) \\
\(\Theta_{d A}\) & dq stator electrical angle with respect to the rotor A-axis (rad) \\
\(L_{q}, L_{d}\) & q-and d-axis inductances (H) \\
\(L_{s}\) & Stator inductance (H) \\
\(L_{r}\) & Rotor inductance (H) \\
\(L_{m}\) & Magnetizing inductance (H) \\
\(L_{l s}\) & Stator leakage inductance (H) \\
\(L_{l r}\) & Rotor leakage inductance (H) \\
\(v_{s q}, v_{s d}\) & Stator q-and d-axis voltages (V) \\
\(i_{s q}, i_{s d}\) & Stator q-and d-axis currents (A) \\
\(\lambda_{s q}, \lambda_{s d}\) & Stator q-and d-axis flux (Wb) \\
\(i_{r q}, i_{r d}\) & Rotor q-and d-axis currents (A)
\end{tabular}
\begin{tabular}{ll}
\(\lambda_{r q}, \lambda_{r d}\) & Rotor q- and d-axis flux (Wb) \\
\(v_{a}, v_{b}, v_{c}\) & Stator voltage phases a, b, c (V) \\
\(i_{a}, i_{b}, i_{c}\) & Stator currents phases a, b, c (A) \\
\(R_{s}\) & Resistance of the stator windings (Ohm) \\
\(R_{r}\) & Resistance of the rotor windings (Ohm) \\
\(P\) & Number of pole pairs \\
\(T_{e}\) & Electromagnetic torque (Nm)
\end{tabular}

\section*{Mechanical System}

The motor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\(J \quad\) Combined inertia of motor and load (kgm^2)
\(F \quad\) Combined viscous friction of motor and load (\(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\))
\(\theta_{m} \quad\) Motor mechanical angular position (rad)
\(T_{m} \quad\) Motor shaft torque (Nm)
\(T_{e} \quad\) Electromagnetic torque (Nm)
\(T_{f} \quad\) Motor shaft static friction torque (Nm)
\(\omega_{m} \quad\) Angular mechanical velocity of the motor (rad/s)

\section*{Power Accounting}

For the power accounting, the block implements these equations.

\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & \begin{tabular}{l}
Negative signals indicate a \\
loss
\end{tabular} & \begin{tabular}{l}
PwrMech \\
Loss
\end{tabular} & \begin{tabular}{l}
Mechanical \\
power loss
\end{tabular} & \begin{tabular}{l}
\(P_{\text {mech }}\) \\
le
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\(R_{s} \quad\) Stator resistance (Ohm)
\(R_{r} \quad\) Motor resistance (Ohm)
\(i_{a}, i_{b}, i_{c} \quad\) Stator phase \(\mathrm{a}, \mathrm{b}\), and c current (A)
\(i_{s q}, i_{s d} \quad\) Stator \(q\) - and d-axis currents (A)
\(v_{a n}, v_{b n}, v_{c n} \quad\) Stator phase \(\mathrm{a}, \mathrm{b}\), and c voltage (V)
\(\omega_{m} \quad\) Angular mechanical velocity of the rotor (rad/s)
\(F \quad\) Combined motor and load viscous damping (\(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\))
\(T_{e} \quad\) Electromagnetic torque (Nm)
\(T_{f} \quad\) Combined motor and load friction torque (Nm)

\section*{Ports}

\section*{Input}

\section*{LdTrq - Load torque on motor scalar}

Load torque on the motor shaft, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque for the Port configuration parameter.

\section*{Spd - Rotor shaft speed \\ \section*{scalar}}

Angular velocity of the rotor, \(\omega_{m}\), in rad/s.
Dependencies
To create this port, select Speed for the Port configuration parameter.

\section*{PhaseVolt - Stator terminal voltages}

1-by-3 array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Output}

\section*{Info - Bus signal}
bus
The bus signal contains these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{IaStator} & Stator phase current A & \(i_{a}\) & A \\
\hline \multicolumn{3}{|l|}{IbStator} & Stator phase current B & \(i_{b}\) & A \\
\hline \multicolumn{3}{|l|}{IcStator} & Stator phase current C & \(i_{c}\) & A \\
\hline \multicolumn{3}{|l|}{IdSync} & Direct axis current & \(i_{d}\) & A \\
\hline \multicolumn{3}{|l|}{IqSync} & Quadrature axis current & \(i_{q}\) & A \\
\hline \multicolumn{3}{|l|}{VdSync} & Direct axis voltage & \(v_{d}\) & V \\
\hline \multicolumn{3}{|l|}{VqSync} & Quadrature axis voltage & \(v_{q}\) & V \\
\hline \multicolumn{3}{|l|}{MtrSpd} & Angular mechanical velocity of the rotor & \(\omega_{m}\) & rad/s \\
\hline \multicolumn{3}{|l|}{MtrMechPos} & Rotor mechanical angular position & \(\theta_{m}\) & rad \\
\hline \multicolumn{3}{|l|}{MtrPos} & Rotor electrical angular position & \(\theta_{e}\) & rad \\
\hline \multicolumn{3}{|l|}{MtrTrq} & Electromagnetic torque & \(T_{e}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multirow[t]{5}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & W \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & W \\
\hline & \multirow[t]{2}{*}{PwrNotTrns frd} & PwrElec Loss & Resistive power loss & \(P_{\text {elec }}\) & W \\
\hline & & PwrMech Loss & Mechanical power loss & \(P_{\text {mech }}\) & W \\
\hline & PwrStored & PwrMtrS tored & Stored motor power & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

1-by-3 array
Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Speed for the Port configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Port configuration parameter.

\section*{Parameters}

\section*{Block Options}

\section*{Simulation type - Select simulation type \\ Continuous (default)|Discrete}

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample time, Ts - Sample time for discrete integration}
0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Port configuration - Select port configuration}

Torque (default) | Speed
This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

\section*{Parameters}
```

Number of pole pairs, P - Pole pairs

```
```

2 (default) | scalar

```

Motor pole pairs, \(P\).
Stator resistance and leakage inductance, Zs - Resistance and inductance [1.77 0.0139] (default)|vector

Stator resistance, \(R_{S}\), in ohms and leakage inductance, \(L_{l s}\), in H .

Rotor resistance and leakage inductance, Zr - Resistance and inductance [1.34 0.0121] (default)|vector

Rotor resistance, \(R_{r}\), in ohms and leakage inductance, \(L_{l r}\), in H.
Magnetizing inductance, Lm - Inductance
0.3687 (default) | scalar

Magnetizing inductance, \(L_{m}\), in H .
Physical inertia, viscous damping, static friction, mechanical - Inertia, damping, friction
[0.001 0 0] (default) | vector
Mechanical properties of the rotor:
- Inertia, \(J\), in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\)
- Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction, \(T_{f}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, select Torque for the Port configuration.

\section*{Initial Values}

Initial mechanical position, theta_init - Angular position
0 (default) | scalar
Initial rotor angular position, \(\theta_{m 0}\), in rad.
Initial mechanical speed, omega_init - Angular speed
0 (default) | scalar
Initial angular velocity of the rotor, \(\omega_{m 0}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select Torque for the Port configuration.

\section*{References}
[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, MN: MNPERE, 2001.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \(\circledR^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

IM Controller | Flux-Based PMSM | Interior PMSM | Mapped Motor | Surface Mount PMSM

Introduced in R2017a

\section*{IM Controller}

Internal torque-based, field-oriented controller for an induction motor with an optional outer-loop speed controller Library:

\author{
Powertrain Blockset / Propulsion / Electric Motor Controllers
}

\section*{Description}

The IM Controller block implements an internal torque-based, field-oriented controller for an induction motor (IM) with an optional outer-loop speed controller. The torque control implements a strategy to control the motor flux. You can specify either speed or torque control.

The IM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & d-axis current \\
\(i_{d}^{*}\) & d-axis current command \\
\(i_{q}\) & q -axis current \\
\(i^{*}{ }_{q}\) & q -axis current command
\end{tabular}
\begin{tabular}{ll}
\(v_{d}\), & d -axis voltage \\
\(v_{d}{ }_{d}\) & d-axis voltage command \\
\(v_{q}\) & q-axis voltage \\
\(v_{q}^{*}\) & q-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the IM Controller block.

\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:
- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed regulation time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \Pi E V_{s f}\right)}{T_{s m}}
\]

The equation uses these variables.
\begin{tabular}{ll}
\(E V_{s f}\) & Bandwidth of the speed command filter \\
\(T_{s m}\) & Motion controller sample time \\
\(K_{s f}\) & Speed regulator time constant
\end{tabular}

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to compute:
- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameter tab.

The gains for the state feedback are calculated using these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l}
Discrete forms of \\
characteristic equation
\end{tabular} & \begin{tabular}{l}
\(z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z+\frac{-J_{p}+T_{s} b_{a}}{J_{p}}\) \\
\(\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right) z^{2}\) \\
\(-p_{1} p_{2} p_{3}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Speed regulator \\
proportional gain
\end{tabular} & \(b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}\) \\
\hline \begin{tabular}{l}
Speed regulator \\
integral gain
\end{tabular} & \(K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}\) \\
\hline \begin{tabular}{l}
Speed regulator double \\
integral gain
\end{tabular} & \(K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{i s a}\) & Speed regulator double integral gain \\
\(J_{p}\) & Motor inertia \\
\(T_{s m}\) & Motion controller sample time
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameter tab.

The feedforward torque command uses this equation.
\[
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]

The equation uses these variables.
\(J_{p} \quad\) Motor inertia
\(T_{\text {cmdff }} \quad\) Torque command feedforward
\(F_{s} \quad\) Static friction torque constant
\(F_{v} \quad\) Viscous friction torque constant
\(F_{S} \quad\) Static friction torque constant
\(\omega_{m} \quad\) Rotor mechanical speed

\section*{Torque Determination}

The block uses a quadrature current to determine the base speed and the current commands. The motor ratings determine the rated electrical speed.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Current commands & \[
\begin{aligned}
& i_{\text {qref }}=\frac{T_{\text {cmd }}}{i_{\text {sq_}} 0 \cdot P \cdot\left(\frac{L^{2} m}{L_{r}}\right)} \\
& \text { If }\left|\omega_{e}\right| \leq \omega_{\text {rated }} \\
& i_{\text {dref }}=i_{\text {sd } _0} \\
& i_{\text {dref }}=\frac{i_{\text {sd } _0} 0 \omega_{\text {rated }}}{\left|\omega_{e}\right|}
\end{aligned}
\]
End \\
\hline Inductance & \[
\begin{aligned}
& L_{r}=L_{l r}+L_{m} \\
& L_{s}=L_{l s}+L_{m}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(i_{\text {dref }}\) & d-axis reference current \\
\(i_{\text {aref }}\) & q-axis reference current \\
\(i_{\text {sd_ } 0}\) & d-axis rated current \\
\(i_{\text {sq_0 }}\) & q-axis rated current \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\omega_{\text {rated }}\) & Rated electrical speed \\
\(L_{l r}\) & Rotor leaking inductance
\end{tabular}
\begin{tabular}{ll}
\(L_{r}\) & Rotor winding inductance \\
\(L_{l s}\) & Stator leaking inductance \\
\(L_{s}\) & Stator winding inductance \\
\(L_{m}\) & Motor magnetizing inductance \\
\(P\) & Motor pole pairs \\
\(T_{c m d}\) & Commanded motor maximum torque
\end{tabular}

\section*{Current Regulators}

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d-axis and q -axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:
- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of \(E V_{\text {current }}\).
The block implements these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l}
Motor voltage, in the stator \\
reference frame
\end{tabular} & \(\sigma=1-\frac{L^{2}{ }_{m}}{L_{s} L_{r}}\) \\
& \(v_{s d}=R_{s} i_{s d}+\sigma L_{s} \frac{d i_{s d}}{d t}+\frac{L_{m}}{L_{r}} \frac{d \lambda_{r d}}{d t}-P \omega_{m} \sigma L_{s} i_{s q}\) \\
& \(v_{s q}=R_{s} i_{s q}+\sigma L_{s} \frac{d i_{s q}}{d t}+\omega_{d} \frac{L_{m}}{L_{r}} \frac{d \lambda_{r d}}{d t}+P \omega_{m} \sigma L_{s} i_{s d}\) \\
\hline Current regulator gains & \begin{tabular}{l}
\(\omega_{b}=2 \pi E V_{\text {current }}\) \\
\(K_{p}=\sigma L_{d} \omega_{b}\) \\
\(K_{i}=R_{s} \omega_{b}\) \\
\hline Transfer functions \\
\\
\hline\(\frac{i_{d}}{i_{d r e f}}=\frac{\omega_{b}}{s+\omega_{b}}\) \\
\(\frac{i_{q}}{i_{\text {qref }}}=\frac{\omega_{b}}{s+\omega_{b}}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E V_{\text {current }}\) & Current regulator bandwidth \\
\(i_{d}\) & d-axis current \\
\(i_{q}\) & q -axis current \\
\(i_{s q}\) & Stator q-axis current \\
\(i_{s d}\) & Stator d-axis current \\
\(v_{s d}\) & Stator d-axis voltage
\end{tabular}
\begin{tabular}{ll}
\(\nu_{s q}\) & Stator q-axis voltage \\
\(K_{p}\) & Current regulator d-axis gain \\
\(K_{i}\) & Current regulator integrator gain \\
\(L_{s}\) & Stator winding inductance \\
\(L_{m}\) & Motor magnetizing inductance \\
\(L_{r}\) & Rotor winding inductance \\
\(R_{s}\) & Stator phase winding resistance \\
\(\lambda_{r d}\) & Rotor d-axis magnetic flux \\
\(\sigma\) & Leakage factor \\
\(p\) & Motor pole pairs
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase \((a, b)\) quantities, quadrature twophase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l}
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\quad \frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{C}\) \\
\(x_{\beta}=\) \\
\hline
\end{tabular}\(\quad \frac{\sqrt{3}}{2} x_{b}-\quad \frac{\sqrt{3}}{2} x_{C}\)
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(P\) & Motor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed
\end{tabular}
\begin{tabular}{ll}
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} \quad i_{a}+\quad v_{b} \quad i_{b}+\quad v_{c} \quad i_{C}\) \\
\hline Source power & \(S r C_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(M t r T r q_{e s t}=P \lambda_{r d} i_{s q} \frac{L_{m}}{L_{r}}\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency load \\
to source
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline Power loss for tabulated efficiency & \(P w r_{L o s s}=\frac{f\left(\omega_{m}, M t r T r q_{e s t}\right)}{}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(v_{b u s}\) & Estimated DC bus voltage \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{b u s}\) & Estimated DC bus current \\
\(E f f\) & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed \\
\(L_{r}\) & Rotor winding inductance \\
\(L_{m}\) & Motor magnetizing inductance \\
\(\lambda_{r d}\) & Rotor d-axis magnetic flux \\
\(i_{s q}\) & q-axis current \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{l}
- \begin{tabular}{l}
Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation. \\
- Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
\\
\\
\\
\\
\\
\\
\\
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

\section*{SpdReq - Rotor mechanical speed command \\ scalar}

Rotor mechanical speed command, \(\omega^{*}{ }_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.

\section*{TrqCmd - Torque command \\ scalar}

Torque command, \(T^{*}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.

\section*{BusVolt - DC bus voltage}
scalar
DC bus voltage \(v_{\text {bus }}\), in V .
PhaseCurrA - Current scalar

Stator current phase a, \(i_{a}\), in A.

\section*{PhaseCurrB - Current}
scalar

Stator current phase b, \(i_{b}\), in A.

\section*{SpdFdbk - Rotor mechanical speed \\ scalar}

Rotor mechanical speed, \(\omega_{m}\), in rad/s.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{BusCurr - Bus current}
scalar

Estimated DC bus current, \(i_{\text {bus }}\), in A.

\section*{PhaseVolt - Stator terminal voltages}
array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V.

\section*{Parameters}

\section*{Block Options}

\section*{Control Type - Select control}

Speed Control (default)|Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

\section*{Motor}

Stator resistance, Rs - Resistance
1.77 (default) | scalar

Stator phase winding resistance, \(R_{s}\), in ohm.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 4 } & Parameter & Tab \\
\hline Stator resistance, Rs & D-axis rated current, Isd_0 & Id and Iq Calculation \\
& Q-axis rated current, Isq_0 & \\
& Torque at rated current, Tem & \\
\cline { 2 - 3 } & D and Q axis integral gain, Ki & Current Controller \\
\hline
\end{tabular}

Stator leakage inductance, Lls - Inductance
0.0139 (default) | scalar

Stator leakage inductance, \(L_{l s}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\hline & Parameter & Tab \\
\hline \begin{tabular}{l}
Stator leakage \\
inductance, Lls
\end{tabular} & \begin{tabular}{l}
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0 \\
Torque at rated current, Tem
\end{tabular} & Id and Iq Calculation \\
\hline \begin{tabular}{l}
D and Q axis proportional \\
gain, Kp \\
D and Q axis integral gain, Ki
\end{tabular} & Current Controller \\
\hline
\end{tabular}

Rotor resistance, Rr - Resistance
1.34 (default) | scalar

Rotor resistance, \(R_{r}\), in ohm.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Rotor resistance, Rr & D-axis rated current, Isd_0 & Id and Iq Calculation \\
& Q-axis rated current, Isq_0 \\
& Torque at rated current, Tem
\end{tabular}\(\quad\).

Rotor leakage inductance, Llr - Inductance
0.0121 (default) | scalar

Rotor leakage inductance, \(L_{l r}\), in H .
Dependencies
This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & \multicolumn{2}{|l|}{ Used to Derive } \\
\hline & Parameter & Tab \\
\hline \begin{tabular}{l}
Rotor leakage \\
inductance, Llr
\end{tabular} & \begin{tabular}{l}
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0 \\
Torque at rated current, Tem
\end{tabular} & Id and Iq Calculation \\
\hline \begin{tabular}{l}
D and Q axis proportional \\
gain, Kp
\end{tabular} & Current Controller \\
\hline
\end{tabular}

Rotor magnetizing inductance, Lm - Inductance
0.3687 (default)| scalar

Rotor magnetizing inductance, \(L_{m}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} & \multicolumn{2}{|l|}{Used to Derive} \\
\hline & Parameter & Tab \\
\hline \multirow[t]{2}{*}{Rotor leakage inductance, Llr} & \begin{tabular}{l}
D-axis rated current, Isd_0 Q-axis rated current, Isq_0 \\
Torque at rated current, Tem
\end{tabular} & Id and Iq Calculation \\
\hline & \(D\) and \(Q\) axis proportional gain, Kp & Current Controller \\
\hline
\end{tabular}

Number of pole pairs, PolePairs - Poles
2 (default) | scalar
Motor pole pairs, \(P\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & \\
\hline \begin{tabular}{l}
Rotor leakage \\
inductance, Llr
\end{tabular} & Torque at rated current, Tem & Id and Iq Calculation \\
\hline
\end{tabular}

Physical inertia, viscous damping, static friction, Mechanical - Mechanical properties of motor
[0.025, 0, 0] (default) | vector

Mechanical properties of the motor:
- Motor inertia, \(F_{v}\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous friction torque constant, \(F_{v}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction torque constant, \(F_{s}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & Tab \\
\hline & Parameter & Speed Controller \\
\hline \begin{tabular}{l}
Physical inertia, \\
viscous damping, \\
static friction, \\
Mechanical
\end{tabular} & Proportional gain, ba & Angular gain, Ksa \\
Rotational gain, Kisa \\
Inertia compensation, Jcomp \\
Viscous damping \\
compensation, Fv \\
Static friction, Fs
\end{tabular}\(\quad\).

\section*{Id and Iq Calculation}

\section*{Rated synchronous speed, Frate - Motor frequency \\ 60 (default) | scalar}

Motor-rated electrical frequency, \(F_{\text {rate }}\), in Hz .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{} \\
\cline { 2 - 3 } & Used to Derive & Tab \\
\hline \begin{tabular}{l}
Rated synchronoter \\
speed, Frate
\end{tabular} & D-axis rated current, Isd_0 & Id and Iq Calculation \\
Q-axis rated current, Isq_0 \\
Torque at rated current, Tem
\end{tabular}\(\quad\)

Rated line to line voltage RMS, Vrate - Motor voltage
460 (default) | scalar
Motor-rated line-to-line voltage, \(V_{\text {rate }}\), in V .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Rated synchronous \\
speed, Frate
\end{tabular} & \begin{tabular}{l}
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0
\end{tabular} & Id and Iq Calculation \\
& \begin{tabular}{l}
Torque at rated current, Tem
\end{tabular} & \\
\hline
\end{tabular}

Rated slip, Srate - Motor slip speed
0.0172 (default) | scalar

Motor-rated slip speed, \(S_{\text {rate }}\), dimensionless.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & Tab \\
\hline Rated slip, Srate & Darameter & \begin{tabular}{l}
-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0 \\
Torque at rated current, Tem
\end{tabular} \\
\hline
\end{tabular}

\section*{Calculate Rated Stator Flux Current - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Id and Iq \\
Calculation tab
\end{tabular} & Dependency & Tab \\
\cline { 2 - 3 } \begin{tabular}{l}
D-axis rated current, \\
Isd_0
\end{tabular} & \begin{tabular}{l}
Rated synchronous speed, \\
Frate
\end{tabular} & Id and Iq Calculation \\
\begin{tabular}{l}
Q-axis rated current, \\
Isq_0
\end{tabular} & \begin{tabular}{l}
Rated line to line voltage \\
RMS, Vrate
\end{tabular} & \\
\begin{tabular}{l}
Torque at rated \\
current, Tem
\end{tabular} & Rated slip, Srate & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Id and Iq \\
Calculation tab
\end{tabular} & Dependency & Tab \\
\hline & Parameter & Motor Parameters \\
\hline Stator resistance, Rs \\
Stator leakage inductance, Lls & \\
\hline \begin{tabular}{l}
Rotor resistance, Rr \\
Rotor leakage inductance, Llr \\
Rotor magnetizing \\
inductance, \(\mathbf{L m}\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{D-axis rated current, Isd_0 - Derived}
3.1004 (default) | scalar

Derived d-axis rated current, in A.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Id and Iq \\
Calculation tab
\end{tabular} & Dependency & Parameter \\
\hline \begin{tabular}{l}
D-axis rated current, \\
Isd_0
\end{tabular} & \begin{tabular}{l}
Rated synchronous speed, \\
Frate
\end{tabular} & Id and Iq Calculation \\
\begin{tabular}{l}
Q-axis rated current, \\
Isq_0
\end{tabular} & \begin{tabular}{l}
Rated line to line voltage \\
RMS, Vrate
\end{tabular} \\
\begin{tabular}{l}
Torque at rated \\
current, Tem
\end{tabular} & \begin{tabular}{l}
Rated slip, Srate
\end{tabular} & Motor Parameters \\
\hline \begin{tabular}{l}
Stator resistance, Rs \\
Stator leakage inductance, Lls \\
Rotor resistance, Rr
\end{tabular} & \begin{tabular}{l}
Rotor leakage inductance, Llr \\
Rotor magnetizing \\
inductance, Lm
\end{tabular} & \\
\hline
\end{tabular}
```

Q-axis rated current, Isq_0 - Derived
5.7131 (default) | scalar

```

Derived q-axis rated current, in A.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Id and Iq \\
Calculation tab
\end{tabular} & Dependency & Tab \\
\cline { 2 - 3 } \begin{tabular}{l}
D-axis rated current, \\
Isd_0
\end{tabular} & \begin{tabular}{l}
Rated synchronous speed, \\
Frate
\end{tabular} & Id and Iq Calculation \\
\begin{tabular}{l}
Q-axis rated current,
\end{tabular} & \begin{tabular}{l}
Rated line to line voltage \\
RMS, Vrate
\end{tabular} & \begin{tabular}{l}
Rated slip, Srate
\end{tabular} \\
\begin{tabular}{ll}
Torque at rated \\
current, Tem
\end{tabular} & \begin{tabular}{l}
Stator resistance, Rs \\
Stator leakage inductance, Lls
\end{tabular} & Motor Parameters \\
& \begin{tabular}{l}
Rotor resistance, Rr \\
Rotor leakage inductance, Llr \\
Rotor magnetizing \\
inductance, Lm
\end{tabular} & \\
\hline
\end{tabular}

Torque at rated current, Tem - Derived
12.6467 (default) | scalar

Torque at rated current, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Id and Iq \\
Calculation tab
\end{tabular} & Dependency & Tab \\
\cline { 2 - 3 } \begin{tabular}{l}
D-axis rated current, \\
Isd_0
\end{tabular} & \begin{tabular}{l}
Rated synchronous speed, \\
Frate
\end{tabular} & Id and Iq Calculation \\
\begin{tabular}{l}
Q-axis rated current, \\
Isq_0
\end{tabular} & \begin{tabular}{l}
Rated line to line voltage \\
RMS, Vrate
\end{tabular} \\
\begin{tabular}{l}
Torque at rated \\
current, Tem
\end{tabular} & Rated slip, Srate
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Derived Parameter on Id and Iq Calculation tab} & \multicolumn{2}{|l|}{Dependency} \\
\hline & Parameter & Tab \\
\hline & Stator resistance, Rs Stator leakage inductance, Lls Rotor resistance, \(\mathbf{R r}\) Rotor leakage inductance, Llr Rotor magnetizing inductance, \(\mathbf{L m}\) & Motor Parameters \\
\hline
\end{tabular}

\section*{Current Controller}

\section*{Bandwidth of the current regulator, EV_current - Bandwidth 200 (default) | scalar}

Current regulator bandwidth, in Hz .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\hline & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
current regulator, \\
EV_current
\end{tabular} & \begin{tabular}{l}
D and Q axis integral gain, Ki \\
D and Q axis proportional \\
gain, Kp
\end{tabular} & Current Controller \\
\hline
\end{tabular}

Sample time for the torque control, Tst - Time
5e-5 (default) | scalar
Torque control sample time, in s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Sample time for the \\
torque control, Tst
\end{tabular} & \begin{tabular}{l}
Speed regulation time \\
constant, Ksf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Calculate Current Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Current \\
Controller tab
\end{tabular} & Dependency \\
\cline { 2 - 3 } \begin{tabular}{l}
D and Q axis \\
proportional gain, \\
Kp \\
D and Q axis integral \\
gain, Ki
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\cline { 2 - 3 } & \begin{tabular}{l}
Stator resistance, Rs \\
Rotor resistance, Rr
\end{tabular} & Motor Parameters \\
& \begin{tabular}{l}
Rotor leakage inductance, Llr \\
Rotor magnetizing \\
inductance, Lm
\end{tabular} & \\
\hline
\end{tabular}

D and Q axis proportional gain, Kp - Derived
32.1894 (default)| scalar

Derived proportional gain, in V/A.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Current \\
Controller tab
\end{tabular} & Dependency \\
\cline { 2 - 3 } \begin{tabular}{l}
D and Q axis \\
proportional gain, \\
Kp \\
D and Q axis integral \\
gain, Ki
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\cline { 2 - 3 } & \begin{tabular}{l}
Stator resistance, Rs \\
Rotor resistance, Rr
\end{tabular} & Motor Parameters \\
& \begin{tabular}{l}
Rotor leakage inductance, Llr \\
Rotor magnetizing \\
inductance, Lm
\end{tabular} & \\
\hline
\end{tabular}

D and Q axis integral gain, Ki - Derived 2224.2476 (default)| scalar

Derived integral gain, in V/A*s.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Derived Parameter \\
on Current \\
Controller tab
\end{tabular} & Dependency & Pab \\
\hline \begin{tabular}{l}
D and Q axis \\
proportional gain, \\
Kp
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\hline \begin{tabular}{l}
D and Q axis integral \\
gain, Ki
\end{tabular} & \begin{tabular}{l}
Stator resistance, Rs Parameters \\
Stator leakage inductance, Lls \\
Rotor resistance, Rr
\end{tabular} & \\
\hline \begin{tabular}{l}
Rotor leakage inductance, Llr \\
Rotor magnetizing \\
inductance, \(\mathbf{L m}\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{Speed Controller}

Bandwidth of the motion controller, EV_motion - Bandwidth [20, 4, 0.8] (default)|vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to \(1 / 5\) the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [2040.8].

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
motion controller, \\
EV_motion
\end{tabular} & Proportional gain, ba \\
Angular gain, Ksa \\
Rotational gain, Kisa
\end{tabular}\(\quad\) Speed Controller \(\quad\) (

Bandwidth of the state filter, EV_sf - Bandwidth
200 (default) | scalar
State filter bandwidth, in Hz.

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\hline & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
state filter, EV_sf
\end{tabular} & \begin{tabular}{l}
Speed regulation time \\
constant, Ksf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Calculate Speed Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Speed Controller tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Proportional gain, ba & \[
b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}
\] & \begin{tabular}{l}
Bandwidth of the motion controller, EV_motion \\
Bandwidth of the state filter, EV_sf
\end{tabular} & Speed Controller \\
\hline Angular gain, Ksa & \[
\begin{aligned}
& K_{s a} \\
& =\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}
\end{aligned}
\] & Sample time for the torque control, Tst & Current Controller \\
\hline Rotational gain, Kisa & \[
\begin{aligned}
& K_{\text {isa }} \\
& =\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s}^{2}}{T_{s m}^{3}}
\end{aligned}
\] & Physical inertia, viscous damping, static friction, Mechanical & Motor Parameters \\
\hline \begin{tabular}{|l|}
\hline \begin{tabular}{l}
Speed \\
regulation \\
time constant, \\
Ksf
\end{tabular} \\
\hline
\end{tabular} & \[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\] & & \\
\hline Inertia compensation Jcomp & \(J_{\text {comp }}=J_{p}\) & Physical inertia, viscous damping, static friction, & Motor Parameters \\
\hline \begin{tabular}{|l|}
\hline Viscous \\
damping \\
compensation, \\
\hline Fv \\
\hline
\end{tabular} & \(F_{v}\) & M & \\
\hline Static friction, Fs & \(F_{s}\) & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{\text {isa }}\) & Speed regulator double integral gain \\
\(K_{s f}\) & Speed regulator time constant \\
\(J_{p}\) & Motor inertia \\
\(E V_{s f}\) & State filter bandwidth \\
\(E V_{\text {motion }}\) & Motion controller bandwidth \\
\begin{tabular}{ll}
Proportional & gain, ba - Derived \\
3.7477 (default) \(\mid\) scalar
\end{tabular} \\
\begin{tabular}{l}
Derived proportional gain, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\). \\
Dependencies
\end{tabular}
\end{tabular}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Proportional gain, ba & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Angular gain, Ksa - Derived}
94.0877 (default) | scalar

Derived angular gain, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Angular gain, Ksa & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Rotational gain, Kisa - Derived}

\subsection*{381.7822 (default) | scalar}

Derived rotational gain, in \(\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } Rotational gain, Kisa & \begin{tabular}{l}
Parameter \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\cline { 2 - 3 } & \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Speed regulation time constant, Ksf - Derived
1217.9727 (default) | scalar

Derived speed regulation time constant, in 1/s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Speed regulation \\
time constant, Ksf
\end{tabular} & \begin{tabular}{l}
Sample time for the torque \\
control, Tst
\end{tabular} & Current Controller \\
\hline \begin{tabular}{l}
Bandwidth of the state filter, \\
EV_sf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Inertia compensation, Jcomp - Derived
0.025 (default)| scalar

Derived inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\)

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Motor Parameters \\
\hline \begin{tabular}{l}
Inertia \\
compensation, \\
Jcomp
\end{tabular} & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & \\
\hline
\end{tabular}

Viscous damping compensation, Fv - Derived
0 (default) | scalar

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Viscous damping \\
compensation, Fv
\end{tabular} & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

Static friction, Fs - Derived
0 (default) | scalar
Derived static friction, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\hline Static friction, Fs & \begin{tabular}{l}
Parameter \\
Physical inertia, viscous \\
Mechanical static friction,
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{l}
- Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l}
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
& \begin{tabular}{l}
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions.
\end{tabular} \\
& Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff - Constant
98 (default) | scalar
Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints
[0 200400600800 1000] (default)| 1-by-M vector
Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints
[0 25 50 75 100] (default)| 1-by-N vector

```

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Corresponding losses, losses_table - Table
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550
700;100 300 500 700 900;100 350 600 850 1100] (default)| M-by-N array

```

Array of values for electrical losses as a function of \(M\) speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints [200 400600800 1000] (default) | 1-by-M vector

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.
```

Vector of torques (T) for tabulated efficiency, T_eff_bp - Breakpoints

```
[25 5075 100] (default) | 1-by-N vector

Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table - Table}
[96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7
99.8;99.2 99.6 99.7 99.8] (default)| M-by-N array

Array of efficiency as a function of \(M\) speeds and \(N\) torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/August 1994, pp. 920-926.
[3] Muyang Li. Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on ZSource Inverters. Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 4250.
[6] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, MN: MNPERE, 2001.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink® Coder \({ }^{\mathrm{Tm}}\).

\section*{See Also}

Induction Motor | Flux-Based PM Controller | Interior PM Controller | Surface Mount PM Controller
Introduced in R2017a

\section*{Surface Mount PMSM}

Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force
\begin{tabular}{ll}
Library: & Powertrain Blockset / Propulsion / Electric Motors and \\
& Inverters \\
& Motor Control Blockset / Electrical Systems / Motors
\end{tabular}

\section*{Description}

The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and singleprecision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

On the Parameters tab, if you select Back-emf or Torque constant, the block implements one of these equations to calculate the permanent flux linkage constant.
\begin{tabular}{|l|l|}
\hline Setting & Equation \\
\hline Back-emf & \(\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \Pi}\) \\
\hline Torque constant & \(\lambda_{p m}=\frac{2}{3} \cdot \frac{K_{t}}{P}\) \\
\hline
\end{tabular}

\section*{Motor Construction}

This figure shows the motor construction with a single pole pair on the motor.

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with motor angle.

For the axes convention, the \(a\)-phase and permanent magnet fluxes are aligned when motor angle \(\theta_{r}\) is zero.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements these equations, expressed in the motor flux reference frame (dq frame). All quantities in the motor reference frame are referred to the stator.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d}{d t} i_{d}=\frac{1}{L_{d}} v_{d}-\frac{R}{L_{d}} i_{d}+\frac{L_{q}}{L_{d}} P \omega_{m} i_{q} \\
& \frac{d}{d t} i_{q}=\frac{1}{L_{q}} v_{q}-\frac{R}{L_{q}} i_{q}-\frac{L_{d}}{L_{q}} P \omega_{m} i_{d}-\frac{\lambda_{p m} P \omega_{m}}{L_{q}} \\
& T_{e}=1.5 P\left[\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]
\end{aligned}
\]

The \(L_{q}\) and \(L_{d}\) inductances represent the relation between the phase inductance and the motor position due to the saliency of the motor magnets. For the surface mount PMSM, \(L_{d}=L_{q}\).

The equations use these variables.
\begin{tabular}{ll}
\(L_{q}, L_{d}\) & \(\mathrm{q}-\) and d-axis inductances (H) \\
\(R\) & Resistance of the stator windings (ohm) \\
\(i_{q}, i_{d}\) & q - and d-axis currents (A) \\
\(v_{q}, v_{d}\) & q - and d-axis voltages (V)
\end{tabular}
\begin{tabular}{ll}
\(\omega_{m}\) & Angular mechanical velocity of the motor (rad/s) \\
\(\omega_{e}\) & Angular electrical velocity of the motor (rad/s) \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \((\mathrm{Wb})\) \\
\(K_{e}\) & \begin{tabular}{l}
Back electromotive force \((\mathrm{EMF})(\mathrm{Vpk}\) \\
line-to-line measurement)
\end{tabular} \\
\(K_{t}\) & Torque constant \((\mathrm{N} \cdot \mathrm{m} / \mathrm{A})\) \\
\(P\) & Number of pole pairs \\
\(T_{e}\) & Electromagnetic torque \((\mathrm{Nm})\) \\
\(\Theta_{e}\) & Electrical angle \((\mathrm{rad})\)
\end{tabular}

\section*{Mechanical System}

The motor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\(J \quad\) Combined inertia of motor and load (kgm^2)
\(F \quad\) Combined viscous friction of motor and load (\(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\))
\(\theta_{m} \quad\) Motor mechanical angular position (rad)
\(T_{m} \quad\) Motor shaft torque (Nm)
\(T_{e} \quad\) Electromagnetic torque (Nm)
\(T_{f} \quad\) Motor shaft static friction torque (Nm)
\(\omega_{m} \quad\) Angular mechanical velocity of the motor (rad/s)

\section*{Power Accounting}

For the power accounting, the block implements these equations.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline \begin{tabular}{l}
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrMech Loss & Mechanical power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When Port Configuration is set to Torque:
\[
\left\lvert\, \begin{aligned}
& P_{\text {mech }}=- \\
& \left(\omega_{m}^{2} F+\left|\omega_{m}\right| T_{f}\right)
\end{aligned}\right.
\] \\
When Port Configuration is set to Speed:
\[
P_{\text {mech }}=0
\]
\end{tabular} \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrMtrS tored & Stored motor power & \(P_{\text {str }}\) & \[
\begin{aligned}
P_{\text {str }}= & P_{\text {bus }}+\quad P_{\text {mot }}+ \\
P_{\text {elec }} & +P_{\text {mech }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(R_{s}\) & Stator resistance (ohm) \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, and c current (A) \\
\(i_{s q}, i_{s d}\) & Stator q-and d-axis currents (A) \\
\(v_{a n}, v_{b n}, v_{c n}\) & Stator phase a, b, and c voltage (V) \\
\(\omega_{m}\) & Angular mechanical velocity of the motor (rad/s) \\
\(F\) & Combined motor and load viscous damping \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\) \\
\(T_{e}\) & Electromagnetic torque (Nm) \\
\(T_{f}\) & Combined motor and load friction torque (Nm)
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{LdTrq - Load torque on motor} scalar

Load torque on the motor shaft, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque for the Port Configuration parameter.

\section*{Spd - Motor shaft speed \\ scalar}

Angular velocity of the motor, \(\omega_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed for the Port Configuration parameter.

\section*{PhaseVolt - Stator terminal voltages}

1-by-3 array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V.

\section*{Output}

\section*{Info - Bus signal}
bus
The bus signal contains these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Signal & & & Description & Variable & Units \\
\hline IaStator & & & Stator phase current A & \(i_{a}\) & A \\
\hline IbStator & & & Stator phase current B & \(i_{b}\) & A \\
\hline IcStato & & & Stator phase current C & \(i_{c}\) & A \\
\hline IdSync & & & Direct axis current & \(i_{d}\) & A \\
\hline IqSync & & & Quadrature axis current & \(i_{q}\) & A \\
\hline VdSync & & & Direct axis voltage & \(v_{d}\) & V \\
\hline VqSync & & & Quadrature axis voltage & \(v_{q}\) & V \\
\hline MtrSpd & & & Angular mechanical velocity of the motor & \(\omega_{m}\) & rad/s \\
\hline MtrPos & & & Motor mechanical angular position & \(\theta_{m}\) & rad \\
\hline MtrTrq & & & Electromagnetic torque & \(T_{e}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline PwrInfo & PwrTrnsfrd & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & W \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & W \\
\hline & PwrNotTrns frd & \[
\begin{aligned}
& \text { PwrElecLo } \\
& \text { ss }
\end{aligned}
\] & Resistive power loss & \(P_{\text {elec }}\) & W \\
\hline & & PwrMechLo SS & Mechanical power loss & \(P_{\text {mech }}\) & W \\
\hline & PwrStored & PwrMtrSto red & Stored motor power & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

\section*{1-by-3 array}

Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Speed for the Mechanical input configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Mechanical input configuration parameter.

\section*{Parameters}

\section*{Block Options}

Mechanical input configuration - Select port configuration
Torque (default) | Speed
This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

\section*{Simulation type - Select simulation type \\ Continuous (default) | Discrete}

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample Time (Ts) - Sample time for discrete integration \\ scalar}

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Parameters}

Number of pole pairs (P) - Pole pairs
scalar
Motor pole pairs, \(P\).
Stator phase resistance per phase (Rs) - Resistance scalar

Stator phase resistance per phase, \(R_{s}\), in ohm.

\section*{Stator d-axis inductance (Ldq_) - Inductance \\ scalar}

Stator inductance, \(L_{d q}\), in H .

\section*{Permanent flux linkage constant (lambda_pm) - Flux scalar}

Permanent flux linkage constant, \(\lambda_{p m}\), in Wb .

\section*{Back-emf constant (Ke) - Back electromotive force scalar}

Back electromotive force, EMF, \(K_{e}\), in peak Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line measurement.

To calculate the permanent flux linkage constant, the block implements this equation.
\[
\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \Pi}
\]

Torque constant (Kt) - Torque constant
scalar
Torque constant, \(K_{t}\), in N•m/A.
To calculate the permanent flux linkage constant, the block implements this equation.
\[
\lambda_{p m}=\frac{2}{3} \cdot \frac{K_{t}}{P}
\]

Physical inertia, viscous damping, and static friction (mechanical) - Inertia, damping, friction
vector
Mechanical properties of the motor:
- Inertia, J, in kg.m^2
- Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction, \(T_{f}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{Initial Values}

Initial d-axis and q-axis current (idq0) - Current vector

Initial q- and d-axis currents, \(i_{q}, i_{d}\), in A.
Initial mechanical position (theta_init) - Angle scalar

Initial motor angular position, \(\theta_{m 0}\), in rad.

Initial mechanical speed (omega_init) - Speed

\section*{scalar}

Initial angular velocity of the motor, \(\omega_{m 0}\), in rad/s.
Dependencies
To enable this parameter, select the Torque configuration parameter.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }_{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Surface Mount PM Controller | Flux-Based PMSM | Induction Motor | Interior PMSM | Mapped Motor

Introduced in R2017a

\section*{Surface Mount PM Controller}

Torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor

\section*{Description}

The Surface Mount PM Controller block implements a torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The torque control utilizes quadrature current and does not weaken the magnetic flux. You can specify either speed or torque control.

The Surface Mount PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.

The block implements equations that use these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & d-axis current \\
\(i^{*}{ }_{d}\) & d-axis current command \\
\(i_{q}\) & q-axis current \\
\(i^{*}{ }_{q}\) & q-axis current command
\end{tabular}
\begin{tabular}{ll}
\(v_{d}\), & d -axis voltage \\
\(v_{d}{ }_{d}\) & d-axis voltage command \\
\(v_{q}\) & q-axis voltage \\
\(v_{q}^{*}\) & q-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Surface Mount PM Controller block.

\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:
- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed regulation time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \Pi E V_{s f}\right)}{T_{s m}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(E V_{s f}\) & Bandwidth of the speed command filter \\
\(T_{s m}\) & Motion controller sample time \\
\(K_{s f}\) & Speed regulator time constant
\end{tabular}

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to calculate:
- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameters tab.

The gains for the state feedback are calculated using these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l}
Discrete forms of \\
characteristic equation
\end{tabular} & \begin{tabular}{l}
\(z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z+\frac{-J_{p}+T_{s} b_{a}}{J_{p}}\) \\
\(\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right) z^{2}\) \\
\(-p_{1} p_{2} p_{3}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Speed regulator \\
proportional gain
\end{tabular} & \(b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}\) \\
\hline \begin{tabular}{l}
Speed regulator \\
integral gain
\end{tabular} & \(K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}\) \\
\hline \begin{tabular}{l}
Speed regulator double \\
integral gain
\end{tabular} & \(K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{i s a}\) & Speed regulator double integral gain \\
\(J_{p}\) & Motor inertia \\
\(T_{s m}\) & Motion controller sample time
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.
\[
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]

The equation uses these variables.
\begin{tabular}{ll}
\(J_{p}\) & Motor inertia \\
\(T_{c m d f f}\) & Torque command feedforward \\
\(F_{s}\) & Static friction torque constant \\
\(F_{v}\) & Viscous friction torque constant \\
\(F_{s}\) & Static friction torque constant \\
\(\omega_{m}\) & Rotor speed
\end{tabular}

\section*{Torque Determination}

The block uses a quadrature current to determine the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Motor maximum torque & \(T_{\max }=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-\quad L_{q}\right) i_{d} i_{q}\right)\) \\
\hline Maximum q-axis phase current & \(i_{q_{-} \max }=\frac{T_{c m d}}{\frac{3}{2} P \lambda_{p m}}\) \\
\hline Electrical base speed & \(\omega_{\text {base }}=\frac{v_{\max }}{\sqrt{\left(L_{q} i_{q}\right)^{2}+\left(\lambda_{p m}\right)^{2}}}\) \\
\hline d-axis voltage & \(v_{d}=-\omega_{e} L_{q} i_{q_{-} \max }\) \\
\hline q-axis voltage & \(v_{q}=\omega_{e} \lambda_{p m}\) \\
\hline Maximum phase current & \(i_{\max }=\left|i_{q_{-} \max }\right|\) \\
\hline Maximum voltage & \(v_{\max }=\frac{v_{b u s}}{\sqrt{3}}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Current command & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(i_{\text {max }}\) & Maximum phase current \\
\(i_{d}\) & d -axis current \\
\(i_{q}\) & q -axis current \\
\(i_{\text {dref }}\) & d -axis reference current \\
\(i_{\text {qref }}\) & q -axis reference current \\
\(i_{q-\max }\) & Maximum q-axis phase current \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(v_{d}\) & d -axis voltage \\
\(v_{q}\) & q -axis voltage \\
\(v_{\text {max }}\) & Maximum line to neutral voltage \\
\(v_{b u s}\) & DC bus voltage \\
\(L_{d}\) & d -axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(P\) & Motor pole pairs \\
\(T_{\text {max }}\) & Motor maximum torque \\
\(T_{\text {cmd }}\) & Commanded motor maximum torque
\end{tabular}

\section*{Current Regulators}

The block regulates the current with an anti-windup feature. Classic proportional-integrator (PI) current regulators do not consider the d -axis and q -axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:
- d-axis and q -axis current cross-coupling
- back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of \(E V_{\text {current }}\).
The block implements these equations.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Motor voltage, in the rotor reference frame & \[
\begin{aligned}
& L_{d} \frac{d i_{d}}{d t}=v_{d}-R_{s} i_{d}+p \omega_{m} L_{q} i_{q} \\
& L_{q} \frac{d i_{q}}{d t}=v_{q}-R_{s} i_{q}-p \omega_{m} L_{d} i_{d}-p \omega_{m} \lambda_{p m}
\end{aligned}
\] \\
\hline Current regulator gains & \[
\begin{aligned}
& \omega_{b}=2 \Pi E V_{\text {current }} \\
& K_{p_{-} d}=L_{d} \omega_{b} \\
& K_{p_{-} q}=L_{q} \omega_{b} \\
& K_{i}=R_{s} \omega_{b}
\end{aligned}
\] \\
\hline Transfer functions & \[
\begin{aligned}
& \frac{i_{d}}{i_{\text {dref }}}=\frac{\omega_{b}}{s+\omega_{b}} \\
& \frac{i_{q}}{i_{\text {qref }}}=\frac{\omega_{b}}{s+\omega_{b}}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E V_{\text {current }}\) & Current regulator bandwidth \\
\(i_{d}\) & d -axis current \\
\(i_{q}\) & q -axis current \\
\(K_{p-d}\) & Current regulator d-axis gain \\
\(K_{p _q}\) & Current regulator q -axis gain \\
\(K_{i}\) & Current regulator integrator gain \\
\(L_{d}\) & d -axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(R_{s}\) & Stator phase winding resistance \\
\(\omega_{m}\) & Rotor speed \\
\(v_{d}\) & d -axis voltage \\
\(v_{q}\) & q -axis voltage \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase (\(a, b\)) quantities, quadrature twophase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l}
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\quad \frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{c}\) \\
\(x_{\beta}=\)
\end{tabular}\(\frac{\sqrt{3}}{2} x_{b}-\quad \frac{\sqrt{3}}{2} x_{c}\)
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(P\) & Motor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}\) \\
\hline Source power & \(S r C_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(M t r T r q_{\text {est }}=1.5 P\left[\lambda i_{q}+\left(L_{d}-L L_{q}\right) i_{d} i_{q}\right]\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline \begin{tabular}{l}
Power loss for single efficiency load \\
to source
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline
\end{tabular}
Power loss for tabulated efficiency \(\quad P w r_{\text {Loss }}=f\left(\omega_{m}\right.\), MtrTr \(\left._{\text {est }}\right)\)

The equations use these variables.
\begin{tabular}{ll}
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(v_{\text {bus }}\) & Estimated DC bus voltage \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{\text {bus }}\) & Estimated DC bus current \\
\(E f f\) & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed \\
\(L_{q}\) & q -axis winding inductance \\
\(L_{d}\) & d -axis winding inductance \\
\(i_{q}\) & q -axis current \\
\(i_{d}\) & d -axis current \\
\(\lambda\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{l}
- Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l}
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
& Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

SpdReq - Rotor speed command
scalar
Rotor speed command, \(\omega^{*}{ }_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.
TrqCmd - Torque command
scalar
Torque command, \(T^{*}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.
BusVolt - DC bus voltage
scalar
DC bus voltage \(v_{\text {bus }}\), in \(V\).
PhaseCurrA - Current
scalar
Stator current phase a, \(i_{a}\), in A.
PhaseCurrB - Current
scalar
Stator current phase b, \(i_{b}\), in A.
SpdFdbk - Rotor speed
scalar
Rotor speed, \(\omega_{m}\), in rad/s.
PosFdbk - Rotor electrical angle
scalar
Rotor electrical angle, \(\Theta_{m}\), in rad.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{BusCurr - Bus current}
scalar
Estimated DC bus current, \(i_{\text {bus }}\), in A.
PhaseVolt - Stator terminal voltages
array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Parameters}

\section*{Configuration}

\section*{Control Type - Select control}

Speed Control (default)|Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

\section*{Motor Parameters}

\section*{Stator resistance, Rs - Resistance}
0.02 (default) | scalar

Stator phase winding resistance, \(R_{s}\), in ohm.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Stator resistance, Rs & D and Q axis integral gain, Ki & Current Controller \\
\hline
\end{tabular}

\section*{DQ axis inductance, Ldq - Inductance}
1.7e-3 (default) |scalar

D-axis winding inductance, \(L_{d q}\), in \(H\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
DQ axis inductance, \\
Ldq
\end{tabular} & \begin{tabular}{l}
D-axis proportional gain, Kp_d \\
Q-axis proportional gain, Kp_q \\
D and Q axis integral gain, Ki
\end{tabular} & Current Controller \\
\hline
\end{tabular}

\section*{Permanent magnet flux, lambda_pm - Flux \\ 0.2205 (default) | scalar}

Permanent magnet flux, \(\lambda_{p m}\), in Wb .
Number of pole pairs, PolePairs - Poles
4 (default) | scalar
Motor pole pairs, \(P\).
Physical inertia, viscous damping, static friction, Mechanical - Inertia, damping, friction
[0.0027, 4.924e-4, 0] (default)|vector
Mechanical properties of the motor:
- Motor inertia, \(F_{v}\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous friction torque constant, \(F_{v}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction torque constant, \(F_{s}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & \multicolumn{2}{|l|}{} \\
\cline { 2 - 3 } & Used to Derive & Parameter \\
\begin{tabular}{l}
Physical inertia, \\
viscous damping, \\
static friction, \\
Mechanical
\end{tabular} & Proportional gain, ba & Speed Controller \\
Angular gain, Ksa \\
Rotational gain, Kisa \\
Inertia compensation, Jcomp \\
Viscous damping \\
Compensation, Fv \\
Static friction, Fs
\end{tabular}

Id and Iq Calculation
Maximum torque, T_max - Torque
60 (default) | scalar
Maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Current Controller}

Bandwidth of the current regulator, EV_current - Bandwidth 200 (default) | scalar

Current regulator bandwidth, in Hz .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
current regulator, \\
EV_current
\end{tabular} & \begin{tabular}{l}
D-axis proportional gain, Kp_d \\
Q-axis proportional gain, Kp_q \\
D and q axis proportional \\
gain, Ki
\end{tabular} & Current Controller \\
\hline
\end{tabular}

\section*{Sample time for the torque control, Tst - Time \\ 5e-5 (default) | scalar}

Torque control sample time, in s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Speed Controller \\
\hline \begin{tabular}{l}
Sample time for the \\
torque control, Tst
\end{tabular} & \begin{tabular}{l}
Speed regulation time \\
constant, Ksf
\end{tabular} & \\
\hline
\end{tabular}

\section*{Calculate Current Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Derived Parameter on Current Controller tab} & \multicolumn{2}{|l|}{Dependency} \\
\hline & Parameter & Tab \\
\hline D-axis proportional gain, Kp_d & Bandwidth of the current regulator, EV_current & Current Controller \\
\hline \begin{tabular}{l}
Q-axis proportional gain, Kp_q \\
\(D\) and \(Q\) axis integral gain, Ki
\end{tabular} & \begin{tabular}{l}
Stator resistance, Rs \\
DQ-axis inductance, Ldq
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

D-axis proportional gain, Kp_d - Derived
0.47149 (default) | scalar

Derived d-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
D-axis proportional \\
gain, Kp_d
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\cline { 2 - 3 } & DQ-axis inductance, Ldq & Motor Parameters \\
\hline
\end{tabular}

Q-axis proportional gain, Kp_q - Derived
0.52125 (default) | scalar

Derived q-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Q-axis proportional \\
gain, Kp_q
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\cline { 2 - 2 } & DQ-axis inductance, Ldq & Motor Parameters \\
\hline
\end{tabular}

D and \(\mathbf{Q}\) axis integral gain, Ki - Derived
251.3274 (default) | scalar

Derived axis integral gain, in V/A*s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\hline & Parameter & Current Controller \\
\hline \begin{tabular}{l}
D and Q axis integral \\
gain, Ki
\end{tabular} & \begin{tabular}{l}
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Motor Parameters \\
\cline { 2 - 3 } & \begin{tabular}{l}
Stator resistance, Rs \\
DQ-axis inductance, Ldq
\end{tabular} & \\
\hline
\end{tabular}

\section*{Speed Controller}

\section*{Bandwidth of the motion controller, EV_motion - Bandwidth} [20, 4, 0.8] (default)|vector

Motion controller bandwidth, in Hz . Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to \(1 / 5\) the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [2040.8].

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & Tab \\
\hline & Parameter & Speed Controller \\
\hline \begin{tabular}{l}
Bandwidth of the \\
motion controller, \\
EV_motion
\end{tabular} & \begin{tabular}{l}
Proportional gain, ba \\
Angular gain, Ksa \\
Rotational gain, Kisa
\end{tabular} & \\
\hline
\end{tabular}

\section*{Bandwidth of the state filter, EV_sf - Bandwidth 200 (default) | scalar}

State filter bandwidth, in Hz .

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Bandwidth of the \\
state filter, EV_sf
\end{tabular} & \begin{tabular}{l}
Speed regulation time \\
constant, Ksf
\end{tabular} & Speed Controller \\
\hline \begin{tabular}{l}
Calculate Speed \\
button
\end{tabular} \\
\hline
\end{tabular}

Click to derive parameters.

\section*{Dependencies}

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Speed Controller tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Proportional gain, ba & \[
b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}
\] & \begin{tabular}{l}
Bandwidth of the motion controller, EV_motion \\
Bandwidth of the state filter, EV_sf
\end{tabular} & Speed Controller \\
\hline Angular gain, Ksa & \[
\left\{\begin{array}{l}
K_{s a} \\
=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}
\end{array}\right.
\] & Sample time for the torque control, Tst & Current Controller \\
\hline Rotational gain, Kisa & \[
\begin{aligned}
& K_{\text {isa }} \\
& =\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s}^{2}}{T_{s m}^{3}}
\end{aligned}
\] & Physical inertia, viscous damping, static friction, Mechanical & Motor Parameters \\
\hline Speed regulation time constant, Ksf & \[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \Pi E V_{s f}\right)}{T_{s m}}
\] & & \\
\hline Inertia compensation, Jcomp & \(J_{\text {comp }}=J_{p}\) & Physical inertia, viscous damping, static friction, & Motor Parameters \\
\hline Viscous damping compensation, Fv & \(F_{v}\) & Mechanical & \\
\hline Static friction, Fs & \(F_{s}\) & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{\text {isa }}\) & Speed regulator double integral gain \\
\(K_{\text {sf }}\) & Speed regulator time constant \\
\(J_{p}\) & Motor inertia \\
\(E V_{s f}\) & State filter bandwidth \\
\(E V_{\text {motion }}\) & Motion controller bandwidth \\
Proportional & gain, ba - Derived \\
3.7477 (default) \(\mid\) scalar \\
Derived proportional gain, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\). \\
Dependencies
\end{tabular}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Dependency & Tab \\
\hline & Parameter & Motor Parameters \\
\hline Proportional gain, ba & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Speed Controller \\
\hline \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & \\
\hline
\end{tabular}

\section*{Angular gain, Ksa - Derived}
94.0877 (default) | scalar

Derived angular gain, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Angular gain, Ksa & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

\section*{Rotational gain, Kisa - Derived}

\subsection*{381.7822 (default) | scalar}

Derived rotational gain, in \(\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Motor Parameters \\
\hline & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Speed Controller \\
\cline { 2 - 3 } & \begin{tabular}{l}
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & \\
\hline
\end{tabular}

Speed regulation time constant, Ksf - Derived
1217.9727 (default) | scalar

Derived speed regulation time constant, in 1/s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Speed regulation \\
time constant, Ksf
\end{tabular} & \begin{tabular}{l}
Sample time for the torque \\
control, Tst
\end{tabular} & Current Controller \\
\hline \begin{tabular}{l}
Bandwidth of the state filter, \\
EV_sf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Inertia compensation, Jcomp - Derived
0.025 (default)| scalar

Derived inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Motor Parameters \\
\hline \begin{tabular}{l}
Inertia \\
compensation, \\
Jcomp
\end{tabular} & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & \\
\hline
\end{tabular}

Viscous damping compensation, Fv - Derived
0 (default) | scalar

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Dependency } \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l}
Viscous damping \\
compensation, Fv
\end{tabular} & \begin{tabular}{l}
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Static friction, Fs - Derived}

0 (default) | scalar
Derived static friction, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\hline Static friction, Fs & \begin{tabular}{l}
Parameter \\
Physical inertia, viscous \\
Mechanical static friction,
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Electrical loss calculated using a constant value for inverter \\
efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Electrical loss calculated as a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{l}
- Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l}
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
& \begin{tabular}{l}
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions.
\end{tabular} \\
& Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff - Constant
98 (default) | scalar
Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints
[0 200400600800 1000] (default) | 1-by-M vector
Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints
[0 25 50 75 100] (default)| 1-by-N vector

```

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Corresponding losses, losses_table - Table
[100 100 100 100 100;100 150 200 250 300;100 200 300 400 500;100 250 400 550
700;100 300 500 700 900;100 350 600 850 1100] (default)| M-by-N array

```

Array of values for electrical losses as a function of \(M\) speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints [200 400600800 1000] (default) | 1-by-M vector

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.
```

Vector of torques (T) for tabulated efficiency, T_eff_bp - Breakpoints
[25 50 75 100] (default)| 1-by-N vector

```

Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table - Table}
[96.2 98.1 98.7 99;98.1 99 99.4 99.5;98.7 99.4 99.6 99.7;99 99.5 99.7
99.8;99.2 99.6 99.7 99.8] (default)| M-by-N array

Array of efficiency as a function of \(M\) speeds and \(N\) torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/August 1994, pp. 920-926.
[3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on ZSource Inverters." Master’s Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 4250.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Surface Mount PMSM | Flux-Based PM Controller | IM Controller | Interior PM Controller

\section*{Introduced in R2017a}

\section*{Three-Phase Voltage Source Inverter}

Three-phase voltage source inverter

\author{
Library: \\ Powertrain Blockset / Propulsion / Electric Motors and Inverters
}

\section*{Description}

The Three-Phase Voltage Source Inverter block implements a three-phase voltage source inverter that generates neutral voltage commands for a balanced three-phase load. Configure the voltage switching function for continuous vector modulation or inverter switch input signals. You can incorporate the block into a closed-loop model to simulate a power inverter. The block controls the ideal switch states.

To enable power loss calculations suitable for code generation targets that limit memory, select Enable memory optimized 2D LUT. Click Calibrate Maps to virtually calibrate an inverter power loss lookup table as a function of motor torque and motor speed.

If you select Input inverter temperature, click Calibrate Maps to virtually calibrate the power loss table as a function of motor torque, motor speed, and inverter temperature. You cannot enable memory optimization for the 3D power loss lookup table.

Use the Switching voltage function parameter to set the switching voltage function.
\begin{tabular}{|c|c|c|}
\hline Setting & Implementation & Illustration \\
\hline Commanded phase voltage & Phase a, b, c line-toneutral voltage command input. Suitable for continuous sinusoidal or space vector modulation input signals. & \\
\hline
\end{tabular}

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/toolbox/ autoblks/autoblksshared/mbctemplates/ MappedInverterDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Input inverter temperature Setting & Required Data \\
\hline & off & -
-
-
-
Potor speed, \(\mathrm{rad} / \mathrm{s}\) torque, \(\mathrm{N} \cdot \mathrm{m}\)
- \\
\hline & on & \begin{tabular}{ll}
- & Motor speed, rad/s \\
- & Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- & Motor temperature, K \\
- & Power loss, W \\
\hline
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect inverter data at steady-state operating conditions. Data should cover the inverter speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).} \\
\hline \multirow[t]{4}{*}{Update block parameters} & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Input inverter temperature Setting & Parameters \\
\hline & off & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Corresponding power loss, ploss_table
\end{tabular} \\
\hline & on & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding power loss, ploss_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Switching Function}

For the switch voltage, the block implementation depends on the Switching voltage function setting.
\begin{tabular}{|c|c|c|}
\hline Setting & Calculation & Equations \\
\hline \multirow[t]{2}{*}{Commanded phase voltage} & Continuous line-to-neutral voltage commands set to phase a, b, c line-to-neutral voltage command input & \[
\begin{aligned}
& v_{a n}=v_{a_{-} c m d} \\
& v_{b n}=v_{b-c m d} \\
& v_{c n}=v_{c_{-} c m d}
\end{aligned}
\] \\
\hline & Line-to-line voltage & \[
\begin{aligned}
& v_{a b}=v_{a n}-v_{b n} \\
& v_{b c}=v_{b n}-v_{c n} \\
& v_{c a}=v_{c n}-v_{a n}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Setting & Calculation & Equations \\
\hline \multirow[t]{4}{*}{Switch inputs} & Switching function & \[
\begin{aligned}
& S F_{a}= \begin{cases}1 & \text { S1 on and S2 off } \\
-1 & \text { S1 off and S2 on }\end{cases} \\
& S F_{b}= \begin{cases}1 & \text { S3 on and S4 off } \\
-1 & S 3 \text { off and S4 on }\end{cases} \\
& S F_{c}= \begin{cases}1 & S 5 \text { on and S6 off } \\
-1 & S 5 \text { off and S6 on }\end{cases}
\end{aligned}
\] \\
\hline & Line-to-center point voltage & \[
\begin{aligned}
& v_{a o}=\frac{v_{b u s}}{2} S F_{a} \\
& v_{b o}=\frac{v_{b u s}}{2} S F_{b} \\
& v_{c o}=\frac{v_{b u s}}{2} S F_{c}
\end{aligned}
\] \\
\hline & Line-to-neutral voltage & \[
\begin{aligned}
& v_{a n}=v_{a o}-v_{n o} \\
& v_{b n}=v_{b o}-v_{n o} \\
& v_{c n}=v_{c o}-v_{n o} \\
& v_{a n}+v_{b n}+v_{c n}=0 \\
& v_{n o}=\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right) \\
& v_{a n}=v_{a o}-\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right) \\
& v_{b n}=v_{b o}-\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right) \\
& v_{c n}=v_{c o}-\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right)
\end{aligned}
\] \\
\hline & Line-to-line voltage & \[
\begin{array}{lll}
v_{a b}= & v_{a n}- & v_{b n} \\
v_{b c}= & v_{b n}- & v_{c n} \\
v_{c a}= & v_{c n}- & v_{a n}
\end{array}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(S F_{a}, S F_{b}, S F_{c}\)
\(v_{\text {bus }}\)
\(V_{a o}, V_{b o}, V_{c o}\)
\(V_{a n}, V_{b n}, V_{c n}\)
\(V_{a b}, V_{b c}, V_{c a}\)
\(V_{a_{-} c m d}, V_{b_{-} c m d}, V_{c_{-} c m d}\)

Phase a, b, c line switching functions, respectively
Power source bus voltage
Phase a, b, c line-to-center voltage, respectively
Phase a, b, c line-to-neutral voltage, respectively
Phase ab, bc, ca line-to-neutral voltage, respectively
Phase a, b, c line-to-neutral voltage commands, respectively

\section*{Current and Power Loss}

For the line-to-center, line-to-neutral, and line-to-line voltage, the block implements these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Motor and bus power & \(P_{m t r}=v_{a n} i_{a}+v_{b n} i_{b}+v_{c n} i_{c}\) \\
& \(P_{b u s}=v_{b u s} i_{b u s}\) \\
\hline Inverter power loss and bus current & \(P_{\text {in }}=P_{b u s}=v_{b u s i_{b u s}}\) \\
& \(P_{\text {out }}=P_{m t r}=v_{a n} i_{a}+v_{b n} i_{b}+v_{c n} i_{c}+P_{\text {LossInv }}\) \\
& \(i_{b u s}=\frac{v_{a n} i_{a}+v_{b n i b}+v_{c n} i_{c}+P_{\text {LossInv }}}{v_{b u s}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P_{m t r}\) & Power delivered to the motor \\
\(P_{\text {bus }}\) & Power from input bus \\
\(P_{\text {loss }}\) & Power loss \\
\(i_{\text {bus }}\) & Power source bus current \\
\(i_{a}, i_{b}, i_{c}\) & Phase a, b, c line current, respectively \\
\(V_{a n}, V_{b n}, V_{c n}\) & Phase a, b, c line-to-neutral voltage, respectively \\
\(v_{b u s}\) & Power source bus voltage
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variable & Equation \\
\hline \multirow[t]{2}{*}{PwrIn
fo} & PwrTrnsfrd Power transferred between blocks & PwrMtr & Power delivered to the motor & \(P_{\text {TrnsfrdMtr }}\) & \[
\begin{aligned}
& P_{\text {TrnsfrdMtr }}=-\left(v_{a n} i_{a}\right. \\
& \left.+v_{h n} i_{h}+v_{c n} i_{c}\right)
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrBus & Power from input bus & \(P_{\text {TrnsfrdBus }}\) & \(P_{\text {TrnsfrdBus }}=P_{\text {bus }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Variable & Equation \\
\hline & \begin{tabular}{|l|l|}
\hline PwrNotTrnsfrd & PwrLoss \\
\hline - Power crossing & \\
the block & \\
boundary, but not & \\
transferred & \\
- \begin{tabular}{l}
Positive \\
signals \\
indicate an \\
input \\
- \\
\\
Negative \\
signals \\
indicate a loss
\end{tabular} & \\
\hline
\end{tabular} & \begin{tabular}{l}
Power loss \\
Negative value indicates power loss
\end{tabular} & \(P_{\text {NotTrnsfrd }}\) & \[
\left(\begin{array}{l}
P_{\text {NotTrnsfrd }}=- \\
\left(P_{\text {TrnsfrdBus }}+P_{\text {TrnsfrdMtr }}\right)
\end{array}\right.
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & \multicolumn{3}{|l|}{Not used} \\
\hline
\end{tabular}

\section*{Lookup Table Memory Optimization}

The inverter power loss table parameter Corresponding power loss, ploss_table data is a function of motor torque and motor speed at different battery voltages. Positive current indicates battery discharge. Negative current indicates battery charge.

To enable power loss calculations suitable for code generation targets that limit memory, select
Enable memory optimized 2D LUT. The block uses linear interpolation to optimize the inverter power loss lookup table values for code generation. This table summarizes the optimization implementation.
\begin{tabular}{|l|l|}
\hline Use Case & Implementation \\
\hline \begin{tabular}{l}
Motor speed and torque input align with the lookup \\
table breakpoint values.
\end{tabular} & \begin{tabular}{l}
Memory-optimized power loss is power loss \\
lookup table value at intersection of motor \\
speed and torque.
\end{tabular} \\
\hline \begin{tabular}{l}
Motor speed and torque input do not align with the \\
lookup table breakpoint values, but are within range
\end{tabular} & \begin{tabular}{l}
Memory-optimized power loss is linear \\
interpolation between corresponding motor \\
speed and torque.
\end{tabular} \\
\hline \begin{tabular}{l}
Motor speed and torque input do not align with the \\
lookup table breakpoint values, and are out of range
\end{tabular} & \begin{tabular}{l}
Cannot compute a memory-optimized power \\
loss. Block uses extrapolated data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Extrapolation}

The lookup tables optimized for code generation do not support extrapolation for data that is out of range. However, you can include pre-calculated extrapolation values in the power loss lookup table by selecting Specify Extrapolation.

The block uses the endpoint parameters to resize the table data.

\section*{Ports}

\section*{Input}

\section*{PhaseVoltCmd - Phase a, b, c line-to-neutral voltage command}

1-by-3 array
Phase a, b, c line-to-neutral voltage command, \(V_{a_{-} c m d}, V_{b_{-} c m d}\), and \(V_{c_{-} c m d}\), in \(V\).

\section*{Dependencies}

To create this port, set Switching voltage function to Commanded phase voltage.

\section*{SwitchCmd - Switch commands}

1-by-3 array
Switch commands, \(S_{a}, S_{b}\), and \(S_{c}\), dimensionless.

\section*{Dependencies}

To create this port, set Switching voltage function to Switch inputs.

\section*{BusVolt - Power source bus voltage}
bus
Power source bus voltage, \(V_{b u s,}\) in V .
PhaseCurr - Phase a, b, c current
1-by-3 array
Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque \\ scalar}

Motor torque, \(T_{m t r,}\) in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.
InvrtrTemp - Inverter operating temperature
scalar
Inverter operating temperature, \(\mathrm{Temp}_{\text {Invitr, }}\) in K .

\section*{Dependencies}

To create this port, select Input inverter temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline BusCurr & Power source bus current & \(i_{\text {bus }}\) & A \\
\hline \multicolumn{6}{|l|}{ PwrLossInv } & Inverter power loss & \(\varepsilon_{\text {inv }}\) & \begin{tabular}{l}
dimensionl \\
ess
\end{tabular} \\
\hline PwrInfo & PwrTrnsfrd & PwrMtr & \begin{tabular}{l}
Power delivered to the \\
motor
\end{tabular} & \(P_{\text {TrnsfrdMtr }}\)
\end{tabular}

PhaseVolt - Phase a, b, c line-to-neutral voltage
1-by-3 array
Phase a, b, c line-to-neutral voltage, \(V_{a n}, V_{b n}\), and \(V_{c n}\), in V .

\section*{BusCurr - Power source bus current scalar}

Power source bus current, \(i_{\text {bus }}\), in A.

\section*{Parameters}

\section*{Block Options}

\section*{Input inverter temperature - Create input port}
off (default) | on

Select this parameter to create the InvrtrTemp input port.
The block enables you to specify inverter power loss lookup tables that are functions of motor torque, \(T_{m t r}\), and motor speed, \(\omega_{m t r}\). If you select Input inverter temperature, the tables are also a function of the inverter temperature, \(\mathrm{Temp}_{\text {Invrtr }}\).
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Input Inverter \\
Temperature \\
Parameter \\
Setting
\end{tabular} & Enables Efficiency Table & Function Of \\
\hline off & Corresponding power loss, ploss_table & \(f\left(T_{m t r}, \omega_{m t r}\right)\) \\
\hline on & \begin{tabular}{l}
Corresponding power loss, \\
ploss_table_3d
\end{tabular} & \(f\left(T_{m t r}, \omega_{m t r}\right.\), Temp \(\left.p_{\text {Invtr }}\right)\) \\
\hline
\end{tabular}

\section*{Dependencies}

If you select Input inverter temperature to specify a 3D power loss lookup table as a function of motor torque, motor speed, and inverter temperature, you cannot select Enable memory optimized 2D LUT to enable a memory optimization.

\section*{Enable memory optimized 2D LUT - Selection \\ off (default) | on}

Enable generation of memory-optimized lookup tables, suitable code generation targets that limit memory.

\section*{Dependencies}

If you select Enable memory optimized 2D LUT, you cannot select Input inverter temperature.

\section*{Calibrate Maps - Calibrate tables with measured data selection}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/toolbox/ autoblks/autoblksshared/mbctemplates/ MappedInverterDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Input inverter temperature Setting & Required Data \\
\hline & off & \\
\hline & on & \begin{tabular}{ll}
- & Motor speed, \(\mathrm{rad} / \mathrm{s}\) \\
- & Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- & Motor temperature, K \\
- & Power loss, W \\
\hline
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect inverter data at steady-state operating conditions. Data should cover the inverter speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{4}{*}{Update block parameters} & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Input inverter temperature Setting & Parameters \\
\hline & off & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Corresponding power loss, ploss_table
\end{tabular} \\
\hline & on & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding power loss, ploss_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Electrical Model}

\section*{Switching voltage function - Selection}

Commanded phase voltage (default)|Switch inputs
Use the Switching voltage function parameter to set the switching voltage function.
\begin{tabular}{|c|c|c|}
\hline Setting & Implementation & Illustration \\
\hline Commanded phase voltage & Phase a, b, c line-toneutral voltage command input. Suitable for continuous sinusoidal or space vector modulation input signals. & \\
\hline
\end{tabular}

\section*{Vector of speeds (w) for tabulated losses, w_eff_bp - Speed breakpoints [-1000 -500 0500 1000] (default)| 1-by-M vector}

Vector of motor speed, \(\omega_{\text {mtr }}\), breakpoints for power loss, in rad/s. If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{Resample storage size for w_eff_bp, n1 - Speed bit size} 128 (default) | 2 | 4 | 8 | 16 | 32 | \(6 \overline{4}\) | \(25 \overline{6}\)

Speed breakpoint storage size, n1, dimensionless. The block resamples the Corresponding power loss, ploss_table data based on the storage size.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT.
Vector of torques (T) for tabulated losses, T_eff_bp - Torque breakpoints [-200 -100 0 100 200] (default)| 1-by-N vector

Vector of motor torque, \(T_{m t r}\), breakpoints for power loss, in \(\mathrm{N} \cdot \mathrm{m}\). If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{Resample storage size for T_eff_bp, n2 - Torque bit size 128 (default) \(|2| 4|8| 16|32| 6 \overline{4} \mid 25 \overline{6}\)}

Torque breakpoint storage size, n2, dimensionless. The block resamples the Corresponding power loss, ploss_table data based on the storage size.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT.

\section*{Vector of temperatures for tabulated losses, Temp_eff_bp - Temperature breakpoints \\ [213.15 293.15 373.15] (default) | 1-by-L vector}

Vector of inverter temperature, \(\mathrm{Temp}_{\text {Invrtr, }}\), breakpoints for power loss, in K .

\section*{Dependencies}

To create this parameter, select Input inverter temperature.

\section*{Corresponding power loss, ploss_table - 2D lookup table}
[1 0.999 0.989 0.997 0.996;0.995 0.994 0.993 0.992 0.991;0.990 0.989 0.988
0.987 0.986;0.985 0.984 0.983 0.982 0.981;0.980 0.979 0.978 0.977 0.976]
(default) | M-by-N array
Array of values for power loss as a function of M motor speeds, \(\omega_{m t r}\), and \(N\) motor torques, \(T_{m t r}\), in W . Each value specifies the power loss for a specific combination of motor speed and motor torque. The array size must match the dimensions defined by the speed and torque vectors.

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup table using measured data.

If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{Dependencies}

To create this parameter, clear Input inverter temperature.
Corresponding power loss, ploss_table_3d - 3D lookup table
M-by-N-by-L array
Array of values for power loss as a function of M motor speeds, \(\omega_{m t r}, \mathrm{~N}\) motor torques, \(T_{m t r}\), and L motor temperatures, Temp Invrtr , in W. Each value specifies the power loss for a specific combination of motor speed, motor torque, and temperature. The array size must match the dimensions defined by the speed, torque, and temperature vectors.

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup table using measured data.

\section*{Dependencies}

To create this parameter, select Input inverter temperature.

\section*{Specify Extraction}
w_eff_bp max endpoint, u1max - Speed breakpoint
1000 (default) | scalar
Speed breakpoint maximum extrapolation endpoint, u1 max, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
```

w_eff_bp min endpoint, ulmin - Speed breakpoint
-1000 (default)| scalar

```

Speed breakpoint minimum extrapolation endpoint, u1min, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.

\section*{T_eff_bp max endpoint, u2max - Torque breakpoint \\ 200 (default) | scalar}

Torque breakpoint maximum extrapolation endpoint, u2max, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
T_eff_bp min endpoint, u2min - Torque breakpoint
- 200 (default) | scalar

Torque breakpoint minimum extrapolation endpoint, u2min, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.

\section*{References}
[1] Lee, Byoung-Kuk and Mehrdad Ehsami. "A simplified functional simulation model for three-phase voltage-source inverter using switching function concept." IEEE Transactions on Industrial Electronics, Vol. 48, No. 2, pp. 309-321, April 2001.
[2] Ziogas, Phoivas D., Eduardo P. Wiechmann, and Victor R. Stefanovic. "A Computer-Aided Analysis and Design Approach for Static Voltage Source Inverters." IEEE Transactions on Industrial Electronics. Transactions on Industry Applications, Vol. IA-21, No. 5, September/October 1985.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \(®\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PM Controller | Induction Motor | Interior PMSM | Surface Mount PMSM
Introduced in R2019a

\section*{Mapped Motor}

Mapped motor and drive electronics operating in torque-control mode
 Inverters
Vehicle Dynamics Blockset / Powertrain / Propulsion

\section*{Description}

The Mapped Motor block implements a mapped motor and drive electronics operating in torquecontrol mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:
- Port configuration - Input torque or speed.
- Electrical torque range - Torque speed envelope or maximum motor power and torque.
- Electrical loss - Single operating point, measured efficiency, or measured loss. If you have ModelBased Calibration Toolbox, you can virtually calibrate the measured loss tables.

\section*{Electrical Torque}

To specify the range of torque and speed that the block allows, on the Electrical Torque tab, for Parametrized by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Tabulated torque-speed \\
envelope
\end{tabular} & \begin{tabular}{l}
Range specified as a set of speed data points and corresponding \\
maximum torque values.
\end{tabular} \\
\hline Maximum torque and power & Range specified with maximum torque and maximum power. \\
\hline
\end{tabular}

For either method, the block implements an envelope similar to this.

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l}
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l}
Sum of these terms, measured at a single measurement point: \\
- Fixed losses independent of torque and speed, \(P_{0}\). Use \(P_{0}\) to \\
account for fixed converter losses. \\
A torque-dependent electrical loss \(k \tau^{2}\), where \(k\) is a constant \\
and \(\tau\) is the torque. Represents ohmic losses in the copper \\
windings. \\
A speed-dependent electrical loss \(k_{\mathrm{w}} \omega^{2}\), where \(k_{\mathrm{w}}\) is a constant \\
and \(\omega\) is the speed. Represents iron losses due to eddy \\
currents.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Loss lookup table that is a function of motor speeds and load \\
torques.
\end{tabular} \\
\hline \begin{tabular}{l}
Tabulated loss data with \\
temperature Model-Based Calibration Toolbox, click Calibrate
\end{tabular} \\
\begin{tabular}{ll}
Maps to virtually calibrate the 2D lookup tables using measured \\
data.
\end{tabular} \\
\hline \begin{tabular}{l}
Loss lookup table that is a function of motor speeds, load torques, \\
and operating temperature. \\
If you have Model-Based Calibration Toolbox, click Calibrate
\end{tabular} \\
\hline Maps to virtually calibrate the 3D lookup tables using measured \\
data.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Tabulated efficiency data & \begin{tabular}{l}
2D efficiency lookup table that is a function of motor speeds and load torques: \\
- Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. \\
- Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. \\
- Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. \\
- Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.
\end{tabular} \\
\hline Tabulated efficiency data with temperature & \begin{tabular}{l}
3D efficiency lookup table that is a function of motor speeds, load torques, and operating temperature: \\
- Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. \\
- Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. \\
- Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. \\
- Does not extrapolate loss values for speed, torque, or temperature magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

1 On the Electrical Losses tab, set Parameterize losses by to either:
- Tabulated loss data
- Tabulated loss data with temperature

\section*{2 Click Calibrate Maps.}

The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/toolbox/ autoblks/autoblksshared/mbctemplates/MappedMotorDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Parameterize losses by & Required Data \\
\hline & Tabulated loss data & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Power loss, W
\end{tabular} \\
\hline & Tabulated loss data with temperature & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Motor temperature, K \\
- Power loss, W
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{4}{*}{Update block parameters} & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Parameterize losses by & Parameters \\
\hline & Tabulated loss data & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Corresponding losses, losses_table
\end{tabular} \\
\hline & Tabulated loss data with temperature & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (\(\mathbf{T}\)) for tabulated losses, T_eff_bp \\
Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding losses, losses_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Battery Current}

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.
\[
\text { BattAmp }=\frac{\text { MechPwr }+ \text { PwrLoss }}{\text { BattVolt }}
\]

The equation uses these variables.

\section*{BattVolt Battery voltage}

MechPwr Mechanical power
PwrLoss Power loss
BattCurr Battery current

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variable & Equations \\
\hline \multirow[t]{3}{*}{PwrIn fo} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd \\
- Positive signals indicate power flow into the block. \\
- Negative signals indicate power flow out of the block.
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \(P_{\text {bus }}=P_{\text {mot }}+P_{\text {loss }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd \\
- Negative signals indicate power loss.
\end{tabular} & PwrLoss & Motor power loss & \(P_{\text {loss }}\) & \(P_{\text {stored }}=\omega_{m} \dot{\omega}_{m} J\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Variable & Equations \\
\hline & \begin{tabular}{l}
PwrStored \\
• \begin{tabular}{l}
Positive signals indicate \\
power gain.
\end{tabular}
\end{tabular} & \begin{tabular}{l}
PwrStor \\
edShft
\end{tabular} & \begin{tabular}{l}
Motor power \\
stored
\end{tabular} & \(P_{\text {str }}\) & \begin{tabular}{l}
\(P_{\text {loss }}=\quad-\left(P_{\text {mot }}\right.\) \\
\(\left.+P_{\text {loss }}-\quad P_{\text {stored }}\right)\)
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{e}\) & Motor output shaft torque \\
\(\omega\) & Motor shaft speed \\
\(J\) & Motor inertia
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{BattVolt - Battery voltage \\ scalar}

Battery voltage, BattVolt, in V.

\section*{TrqCmd - Commanded motor torque \\ scalar}

Commanded motor torque, \(\operatorname{Tr} q_{c m d}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this input port, for the Port configuration, select Torque.

\section*{MtrSpd - Motor output shaft speed}
scalar
Motor shaft speed, \(M t r_{\text {spd }}\), in rad/s.

\section*{Dependencies}

To create this input port, for the Port configuration, select Speed.

\section*{Output}

\section*{Info - Bus signal}
bus
The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline \multicolumn{2}{|l|}{ MechPwr } & Mechanical power & rad \\
\hline PwrLoss & Internal inverter and motor power loss & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multirow{2}{*}{ PwrInfo } & PwrTrnsfrd & PwrMtr & Mechanical power \\
\cline { 2 - 5 } & PwrBus & Electrical power & W \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline \multirow{4}{*}{} & PwrNotTrnsfrd & PwrLoss & Motor power loss & W \\
\cline { 2 - 5 } & PwrStored & \begin{tabular}{l}
PwrStored \\
Shft
\end{tabular} & Motor power stored & W \\
\hline
\end{tabular}

\section*{BattCurr - Battery current \\ scalar}

Battery current draw or demand, \(I_{b a t t}\), in A.

\section*{MtrTrq - Motor torque}
scalar

Motor output shaft torque, \(M t r_{t r q}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{MtrSpd - Motor shaft speed}
scalar
Motor shaft speed, \(M t r_{s p d}\), in rad/s.

\section*{Dependencies}

To create this output port, for the Port configuration, select Torque.

\section*{Parameters}

\section*{Block Options}

\section*{Port configuration - Select port configuration}

Torque (default) | Speed
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Torque & Outpost MtrSpd \\
\hline Speed & Input Mt rSpd \\
\hline
\end{tabular}

\section*{Calibrate Maps - Calibrate tables with measured data selection}

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

1 On the Electrical Losses tab, set Parameterize losses by to either:
- Tabulated loss data
- Tabulated loss data with temperature

\section*{2 Click Calibrate Maps.}

The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>/toolbox/ autoblks/autoblksshared/mbctemplates/MappedMotorDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Parameterize losses by & Required Data \\
\hline & Tabulated loss data & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Power loss, W
\end{tabular} \\
\hline & Tabulated loss data with temperature & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Motor temperature, K \\
- Power loss, W
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{4}{*}{Update block parameters} & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Parameterize losses by & Parameters \\
\hline & Tabulated loss data & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Corresponding losses, losses_table
\end{tabular} \\
\hline & ```
Tabulated loss
data with
temperature
``` & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding losses, losses_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Electrical Torque}

\section*{Parameterized by - Select type}

Tabulated torque-speed envelope (default)|Maximum torque and power
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Tabulated torque-speed \\
envelope
\end{tabular} & \begin{tabular}{l} 
Range specified as a set of speed data points and corresponding \\
maximum torque values.
\end{tabular} \\
\hline Maximum torque and power & Range specified with maximum torque and maximum power. \\
\hline
\end{tabular}

For either method, the block implements an envelope similar to this.


\section*{Vector of rotational speeds, w_t - Rotational speeds}
[0 375750 800] (default)|vector
Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

Vector of maximum torque values, T_t - Torque
[0.09 0.08 0.07 0] (default)|vector
Maximum torque values for permissible steady state, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

\section*{Maximum torque, torque_max - Torque}
```

. 1 (default)| scalar

```

The maximum permissible motor torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.

Maximum power, power_max - Power
30 (default) | scalar
The maximum permissible motor power, in W .

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.

Torque control time constant, Tc - Time constant
0.02 (default) | scalar

Time constant with which the motor driver tracks a torque demand, in s.

\section*{Electrical Losses}

Parameterize losses by - Select type
Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Single efficiency measurement & \begin{tabular}{l}
Sum of these terms, measured at a single measurement point: \\
- Fixed losses independent of torque and speed, \(P_{0}\). Use \(P_{0}\) to account for fixed converter losses. \\
- A torque-dependent electrical loss \(k \tau^{2}\), where \(k\) is a constant and \(\tau\) is the torque. Represents ohmic losses in the copper windings. \\
- A speed-dependent electrical loss \(k_{\mathrm{w}} \omega^{2}\), where \(k_{\mathrm{w}}\) is a constant and \(\omega\) is the speed. Represents iron losses due to eddy currents.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l}
Loss lookup table that is a function of motor speeds and load torques. \\
If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data.
\end{tabular} \\
\hline Tabulated loss data with temperature & \begin{tabular}{l}
Loss lookup table that is a function of motor speeds, load torques, and operating temperature. \\
If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 3D lookup tables using measured data.
\end{tabular} \\
\hline Tabulated efficiency data & \begin{tabular}{l}
2D efficiency lookup table that is a function of motor speeds and load torques: \\
- Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. \\
- Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. \\
- Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. \\
- Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Tabulated efficiency data \\
with temperature
\end{tabular} & \begin{tabular}{l} 
3D efficiency lookup table that is a function of motor speeds, load \\
torques, and operating temperature: \\
- \\
Converts the efficiency values you provide into losses and uses \\
the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l} 
Ignores efficiency values you provide for zero speed or zero \\
torque. Losses are assumed zero when either torque or speed \\
is zero.
\end{tabular} \\
& \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as required, to \\
get the desired level of accuracy for lower power conditions. \\
Does not extrapolate loss values for speed, torque, or \\
temperature magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

\section*{Motor and drive overall efficiency, eff - Efficiency \\ 100 (default) | scalar}

The block defines overall efficiency as:
\[
\eta=100 \frac{\tau_{0} \omega_{0}}{\tau_{0} \omega_{0}+P_{0}+k \tau_{0}^{2}+k_{w} \omega_{0}^{2}}
\]

The equation uses these variables.
\(\tau_{0} \quad\) Torque at which efficiency is measured
\(\omega_{0} \quad\) Speed at which efficiency is measured
\(P_{0} \quad\) Fixed losses independent of torque or speed
\(k \tau_{0}^{2} \quad\) Torque-dependent electrical losses
\(k_{w} \omega^{2} \quad\) Speed-dependent iron losses
At initialization, the block solves the efficiency equation for \(k\). The block neglects losses associated with the rotor damping.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.
```

Speed at which efficiency is measured, w_eff - Speed
375 (default)| scalar

```

Speed at which efficiency is measured, in rad/s.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Torque at which efficiency is measured, T_eff - Torque
0.08 (default)| scalar

Torque at which efficiency is measured, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Iron losses, Piron - Power
0 (default) | scalar
Iron losses at the speed and torque at which efficiency is defined, in W.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Fixed losses independent of torque and speed, Pbase - Power
0 (default) | scalar
Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Vector of speeds (w) for tabulated losses, w_eff_bp - Breakpoints
[-8000 -4000 04000 8000] (default)| 1-by-M vector
Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are 1 by the number of speed breakpoints, M.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select one of these:
- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

Vector of torques (T) for tabulated losses, T_eff_bp - Breakpoints
[0 0.03 0.06 0.09] (default)| 1-by-N vector
Torque breakpoints for lookup table when calculating losses, in \(N \cdot m\). Array dimensions are 1 by the number of torque breakpoints, N .

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select one of these:
- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

Vector of temperatures for tabulated losses, Temp_eff_bp - Breakpoints
[233.15 293.15 373.15] (default)| 1-by-L vector
Temperature breakpoints for lookup table when calculating losses, in K. Array dimensions are 1 by the number of temperature breakpoints, \(L\).

Dependencies
To create this parameter, for the Parameterize losses by parameter, select one of these:
- Tabulated loss data with temperature
- Tabulated efficiency data with temperature

\section*{Corresponding losses, losses_table - 2D lookup table}

M-by-N matrix
Array of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, \(M\), and torque, N , breakpoint vector dimensions.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data.

\section*{Corresponding losses, losses_table_3d - 3D lookup table \\ M-by-N-by-L array}

Array of values for electrical losses as a function of speed, torque, and temperature, in W. Each value specifies the losses for a specific combination of speed, torque, and temperature. The array dimensions must match the speed, M , torque, N , and temperature, L, breakpoint vector dimensions.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data with temperature.

\section*{Corresponding efficiency, efficiency_table - 2D lookup table}

M-by-N matrix
Array of efficiency as a function of speed and torque, in \%. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M , and torque, N , breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table_3d - 3D lookup table
M-by-N-by-L array
Array of efficiency as a function of speed and torque, in \%. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M , torque, N , and temperature, L , breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated efficiency data.

\section*{Mechanical}

Rotor inertia, J - Inertia
5e-6 (default) | scalar
Rotor resistance to change in motor motion, in \(\mathrm{kg}^{*} \mathrm{~m}^{2}\). The value can be zero.

\section*{Dependencies}

To create this parameter, for the Port configuration parameter, select Torque.
Rotor damping, b-Damping
1e-5 (default) | scalar
Rotor damping, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\). The value can be zero.

\section*{Dependencies}

To create this parameter, for the Port configuration parameter, select Torque.
Initial rotor speed, omega_o - Speed
0 (default) | scalar
Rotor speed at the start of the simulation, in rad/s.

\section*{Dependencies}

To create this parameter, for the Port configuration parameter, select Torque.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PMSM | Induction Motor | Interior PMSM | Surface Mount PMSM
Introduced in R2017a

Scenario Creation Blocks

\section*{Drive Cycle Source}

Standard or specified longitudinal drive cycle
\(\begin{array}{ll}\text { Library: } & \text { Powertrain Blockset / Vehicle Scenario Builder } \\ & \text { Vehicle Dynamics Blockset / Vehicle Scenarios / Drive Cycle }\end{array}\) and Maneuvers


\section*{Description}

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:
- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.
- Identify the faults within tolerances specified by standardized tests, including:
- EPA dynamometer driving schedules \({ }^{1}\)
- Worldwide Harmonised Light Vehicle Test Procedure (WLTP) laboratory tests \({ }^{2}\)

For the drive cycles, you can use:
- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Install Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables that define your own drive cycles.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.
\begin{tabular}{|l|l|}
\hline Goal & Action \\
\hline \begin{tabular}{l} 
Repeat the drive cycle if the \\
simulation run time exceeds \\
the drive cycle length.
\end{tabular} & Select Repeat cyclically. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Goal & Action \\
\hline \begin{tabular}{l} 
Output the acceleration, as \\
calculated by Savitzky-Golay \\
differentiation.
\end{tabular} & Select Output acceleration. \\
\hline \begin{tabular}{l} 
Specify a sample period for \\
discrete applications.
\end{tabular} & Specify a Output sample period (0 for continuous), dt parameter. \\
\hline \begin{tabular}{l} 
Update the simulation run \\
time so that it equals the \\
length of the drive cycle.
\end{tabular} & \begin{tabular}{l} 
Click Update simulation time. If a model configuration reference \\
exists, the block does not enable this option.
\end{tabular} \\
\hline \begin{tabular}{l} 
Plot the drive cycle in a \\
MATLAB® figure.
\end{tabular} & Click Plot drive cycle. \\
\hline \begin{tabular}{l} 
Specify the drive cycle using \\
a workspace variable.
\end{tabular} & \begin{tabular}{l} 
Click Specify variable. The block: \\
- Sets the Drive cycle source parameter to Workspace \\
variable.
\end{tabular} \\
\hline \begin{tabular}{l} 
Specify the drive cycle using \\
a file.
\end{tabular} & \begin{tabular}{l} 
Specify the workspace variable so that it contains time, velocity, and, \\
optionally, the gear shift schedule. For examples, see "Create Drive \\
Cycles Using Workspace Variables" on page 6-5.
\end{tabular} \\
\hline Click Select file. The block: \\
Sets the Drive cycle source parameter to .mat, .xls, .xlsx \\
or .txt file. \\
• Enables the Drive cycle source file parameter. \\
Specify a file that contains time, velocity, and, optionally, the gear \\
shift schedule.
\end{tabular}

\section*{Fault and Failure Tracking}

On the Fault Tracking tab, use the parameters to specify the fault tolerances. If the vehicle speed or time is not within the allowable range, the block sets a fault condition.
\begin{tabular}{|l|l|l|l|}
\hline Parameter & Description & Setting & WLTP Tests \(^{\mathbf{2}}\) \\
\cline { 3 - 4 } & EPA Standard \({ }^{\mathbf{1}}\) & \(2.0 \mathrm{~km} / \mathrm{h}\) \\
\hline Speed tolerance & \begin{tabular}{l} 
Speed tolerance \\
above the highest \\
point and below the \\
lowest point of the \\
drive cycle speed \\
trace within the time \\
tolerance.
\end{tabular} & 2.0 mph & 1.0 s \\
\hline Time tolerance & \begin{tabular}{l} 
Time that the block \\
uses to determine the \\
speed tolerance.
\end{tabular} & 1.0 s & 10 \\
\hline \begin{tabular}{l} 
Maximum number of \\
faults
\end{tabular} & \begin{tabular}{l} 
Maximum number of \\
faults during the drive \\
cycle.
\end{tabular} & Not specified & 1.0 s \\
\hline \begin{tabular}{l} 
Maximum single fault \\
time
\end{tabular} & \begin{tabular}{l} 
Maximum fault \\
duration.
\end{tabular} & 2.0 s & Not specified \\
\hline \begin{tabular}{l} 
Maximum total fault \\
time
\end{tabular} & \begin{tabular}{l} 
Maximum \\
accumulated time \\
spent under fault \\
condition.
\end{tabular} & Not specified & \\
\hline
\end{tabular}

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.


\section*{Create Drive Cycles Using Workspace Variables}

If you set Drive cycle source to Workspace variable, you can specify a workspace variable that defines the drive cycle.

This table provides examples for using workspace variables to create your own drive cycles.




\section*{Ports}

\section*{Input}

\section*{VelFdbk - Vehicle longitudinal speed}
scalar

Longitudinal vehicle speed.

\section*{Dependencies}

To enable this port, on the Fault Tracking tab, select Enable fault tracking. Set the Velocity feedback units, inUnit parameter to the VelFdbk input port signal units.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description \\
\hline \multicolumn{2}{|l|}{Reference Speed} & Vehicle reference speed \\
\hline \multicolumn{2}{|l|}{Reference Accel} & Vehicle reference acceleration \\
\hline \multicolumn{2}{|l|}{Gear} & Vehicle gear \\
\hline \multirow[t]{7}{*}{Fault} & UpprBnd & Upper bound of allowable vehicle speed range. \\
\hline & LowerBnd & Lower bound of allowable vehicle speed range. \\
\hline & Fault & \begin{tabular}{l}
Boolean value indicating fault condition: \\
- 1 - Fault \\
- 0 - No fault \\
If the vehicle speed is not within the allowable speed range, the block sets a fault condition.
\end{tabular} \\
\hline & FaultCnt & Number of faults. \\
\hline & CumFaultTime & Cumulative time spent in fault condition. \\
\hline & SnglFaultTime & Tim spent in a single fault. \\
\hline & Fail & \begin{tabular}{l}
Boolean value indicating fault failure: \\
- 1 - Failure \\
- 0 - No failure \\
If the fault conditions exceed the maximum number of faults, maximum single fault time, or maximum total fault time, the block sets a fault failure.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this port, on the Fault Tracking tab, select Enable fault tracking.

\section*{RefSpd - Vehicle reference speed}
scalar
Vehicle reference speed, in units that you specify. To specify the units, use the Output velocity units parameter.

\section*{RefAcc - Vehicle reference acceleration}
scalar

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a secondorder polynomial with a three-sample point filter.

\section*{Dependencies}

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

\section*{Gear - Vehicle gear}
scalar

\section*{Dependencies}

To enable this port:
1 Specify a drive cycle that contains a gear shift schedule. You can use:
- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.

\section*{2 Select Output gear shift data.}

\section*{Parameters}

\section*{Cycle Setup}

\section*{Setup}

\section*{Drive cycle source - Select the drive cycle source}

FTP75 (default)|Wide Open Throttle (WOT)|Workspace variable|.mat, .xls, .xlsx or .txt file
- FTP75 - Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of passenger cars. To install additional drive cycles from a support package, see "Install Drive Cycle Data".
- Wide Open Throttle (WOT) - Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable - Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file - Specify a file that contains time, speed and, optionally, gear data in column format.

Once you have installed additional cycles, you can use set_param to set the drive cycle. For example, to use drive cycle US06:
```

set_param([gcs '/Drive Cycle Source'],'cycleVar','US06')

```

\section*{Dependencies}

The table summarizes the parameter dependencies.
\begin{tabular}{|c|c|}
\hline Drive Cycle Source & Enables Parameter \\
\hline \multirow[t]{7}{*}{Wide Open Throttle (WOT)} & Start time, t_wot1 \\
\hline & Initial reference speed, xdot_woto \\
\hline & Nominal reference speed, xdot_wot1 \\
\hline & Time to start deceleration, wot2 \\
\hline & Final reference speed, xdot_wot2 \\
\hline & WOT simulation time, t_wotend \\
\hline & Source velocity units \\
\hline \multirow[t]{3}{*}{Workspace variable} & From workspace \\
\hline & Source velocity units \\
\hline & Output gear shift data, if drive cycle includes gear shift schedule \\
\hline \multirow[t]{3}{*}{.mat, .xls, .xlsx or .txt file} & Drive cycle source file \\
\hline & Source velocity units \\
\hline & Output gear shift data, if drive cycle includes gear shift schedule \\
\hline
\end{tabular}

\section*{From workspace - Workspace}
variable
Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the Source velocity units parameter field.

A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.
This table provides examples for using workspace variables to create your own drive cycles.




\section*{Dependencies}

To enable this parameter, select Workspace variable from Drive cycle source.

\section*{Drive cycle source file - File name}
.mat, .xls, .xlsx or .txt

File containing monotonically increasing time, velocity, and, optionally, gear in column or commaseparated format. The block ignores units in the file. Enter units for velocity in the Source velocity units parameter field.




If you provide the gear schedule using \(\mathbf{P}, \mathbf{R}, \mathbf{N}, \mathbf{D}, \mathbf{L}, \mathbf{O D}\), the block maps the gears to integers.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline P & 80 \\
\hline R & -1 \\
\hline N & 0 \\
\hline L & 1 \\
\hline D & 2 \\
\hline OD & Next integer after highest specified gear. \\
\hline
\end{tabular}

For example, the block converts the gear schedule P P N L D 345654567 OD 7 to 80 8001234565456787.

\section*{Dependencies}

To enable this parameter, select .mat, .xls, .xlsx or .txt file from Drive cycle source.

\section*{Repeat cyclically - Repeat drive cycle}
off (default) | on

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.

\section*{Output acceleration - Output the acceleration off (default)}

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a secondorder polynomial with a three-sample point filter.

\section*{Dependencies}

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

\section*{Output gear shift data - Output the gear}
off (default) | on

\section*{Dependencies}
- Specify a drive cycle that contains a gear shift schedule. You can use:
- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port Gear.

\section*{WOT}

Start time, t_wot1 - Drive cycle start time
5 (default) | scalar
Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of 10 s .


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

\section*{Initial reference speed, xdot_woto - Speed}

0 (default) | scalar
Initial reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with an initial reference speed of \(4 \mathrm{~m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).
```

Nominal reference speed, xdot_wot1 - Speed

```
30 (default) | scalar

Nominal reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a nominal reference speed of \(30 \mathrm{~m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

\section*{Time to start deceleration, wot2 - Time}

20 (default) | scalar
Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at 25 s.


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).
Final reference speed, xdot_wot2 - Speed
0 (default) | scalar
Final reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a final reference speed of \(2 \mathrm{~m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).
WOT simulation time, t_wotend - Time
30 (default) | scalar
Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of 50 s .


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

\section*{Units and Sample Period}

\section*{Source velocity units - Specify velocity units}
m/s (default)
Input velocity units.

\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (W0T), Workspace variable, or .mat, .xls, .xlsx or .txt file.

Output velocity units - Specify velocity units
m/s (default)
Output velocity units.
Output acceleration units - Specify acceleration units \(\mathrm{m} / \mathrm{s}^{\wedge} 2\) (default)

Specify the output acceleration units.

\section*{Dependencies}

To enable this parameter, select Output acceleration.
Output sample period (0) for continuous - Sample rate 0 (default) | scalar

Sample rate. Set to 0 for continuous sample period. For a discrete period, specify a non-zero rate.

\section*{Fault Tracking}

Fault Settings
Enable fault tracking - Enable fault tracking
off (default) | on
Select this parameter to enable drive cycle fault tracking. Use the parameters to specify the fault tolerances. If the vehicle speed is not within the allowable speed range, the block sets a fault condition.

\section*{Dependencies}

Selecting this parameter enables these parameters:
- Speed tolerance, velBnd
- Speed tolerance units, velBndUnit
- Velocity feedback units, inUnit
- Time tolerance, timeBnd

Speed tolerance, velBnd - Drive cycle speed tolerance
2.0 (default) | scalar

The speed tolerance above the highest point and below the lowest point of the drive cycle speed trace within the time tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the tolerances specified by the standardized tests, use these settings:
- EPA dynamometer driving schedules - 2.0
- WLTP tests - 2.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.


\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.
Speed tolerance units, velBndUnit - Set units
mph (default)
Speed tolerance units. For the units specified by the standardized tests, use these units:
- EPA dynamometer driving schedules - m/s
- WLTP tests - km/h

\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.
Velocity feedback units, inUnit - Set velocity feedback units
m/s (default)
Velocity feedback units. Set the value to the VelFdbk input port signal units.

\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

\section*{Time tolerance, timeBnd - Time tolerance}

\section*{1.0 (default) | scalar}

Time that the block uses to determine the speed tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the time tolerances specified by the standardized tests, use these settings:
- EPA dynamometer driving schedules -1.0
- WLTP tests - 1.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.


\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

\section*{Failure Settings}

Enable failure tracking - Enable failure tracking
off (default) | on
Select this parameter to enable drive cycle failure tracking.

\section*{Dependencies}

To enable this parameter, select Enable fault tracking. Selecting Enable failure tracking parameter enables these parameters:
- Stop simulation when trace fails, stopSim
- Maximum number of faults, maxFaultCnt
- Maximum single fault time, maxFaultTime
- Maximum total fault time, maxTotFaultTime

Maximum number of faults, maxFaultCnt - Maximum number of faults 10 (default) | scalar

Maximum number of faults during the drive cycle. For the number specified by the standardized tests, use these settings:
- EPA dynamometer driving schedules - Not specified
- WLTP tests -10

If the number of faults exceeds the maximum number of faults, the block sets a fault failure.

\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.
Maximum single fault time, maxFaultTime - Maximum duration of single fault 2.0 (default) | scalar

Maximum duration of single fault, in s. For the time specified by the standardized tests, use these settings:
- EPA dynamometer driving schedules -2.0
- WLTP tests - 1.0

If the fault duration exceeds the maximum single fault time, the block sets a fault failure.

\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.

\section*{Maximum total fault time, maxTotFaultTime - Maximum total fault time} 15.0 (default) | scalar

Maximum accumulated time spent under fault condition, in s.
If the accumulated time spent under fault condition exceeds the maximum total fault time, the block sets a fault failure.

\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.

\section*{Simulation Trace}

Display simulation trace - Display velocity trace
off (default) | on
Select this parameter to display a velocity trace window. Selecting this parameter can slow the simulation time.

\section*{Dependencies}

Selecting this parameter enables these parameters:
- Simulation trace update rate, dtTrace
- Simulation trace display window, traceWindow

\section*{Simulation trace update rate, dtTrace - Trace update rate 1 (default) | scalar}

Simulation trace update rate, in s. Set to 0 for continuous sample period. For a discrete period, specify a non-zero rate.

\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.
Simulation trace display window, traceWindow - Trace window update rate 10 (default) | scalar

Simulation trace window update rate, in s.

\section*{Dependencies}

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.

\section*{References}
[1] Environmental Protection Agency (EPA). EPA urban dynamometer driving schedule. 40 CFR 86.115-78, July 1, 2001.
[2] European Union Commission. "Speed trace tolerances". European Union Commission Regulation. 32017R1151, Sec 1.2.6.6, June 1, 2017.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Longitudinal Driver

\section*{Topics}
"Install Drive Cycle Data"
"Track Drive Cycle Errors"
"Time Series Objects and Collections"
Introduced in R2017a

\section*{Longitudinal Driver}


\section*{Description}

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1 . You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

\section*{Configurations}

\section*{External Actions}

Use the External Actions parameters to create input ports for signals that can disable, hold, or override the closed-loop acceleration or deceleration commands. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.
\begin{tabular}{|l|l|l|l|}
\hline Goal & \begin{tabular}{l} 
External Action \\
Parameter
\end{tabular} & Input Ports & Data Type \\
\hline \begin{tabular}{l} 
Override the accelerator \\
command with an input \\
acceleration command.
\end{tabular} & \begin{tabular}{l} 
Accelerator \\
override
\end{tabular} & EnablAccel0vr & Boolean \\
\cline { 3 - 4 } \begin{tabular}{l} 
Hold the acceleration command \\
at the current value.
\end{tabular} & \begin{tabular}{l} 
Accelerator \\
hold
\end{tabular} & AccelHld & double \\
\hline \begin{tabular}{l} 
Disable the acceleration \\
command.
\end{tabular} & \begin{tabular}{l} 
Accelerator \\
disable
\end{tabular} & AccelZero & Boolean \\
\hline \begin{tabular}{l} 
Override the decelerator \\
command with an input \\
deceleration command.
\end{tabular} & \begin{tabular}{l} 
Decelerator \\
override
\end{tabular} & EnablDecel0vr & Boolean \\
\hline \begin{tabular}{l} 
Hold the decelerator command at \\
current value.
\end{tabular} & \begin{tabular}{l} 
Decelerator \\
hold
\end{tabular} & DecelHld & double \\
\hline \begin{tabular}{l} 
Disable the decelerator \\
command.
\end{tabular} & \begin{tabular}{l} 
Decelerator \\
disable
\end{tabular} & DecelZero & Boolean \\
\hline
\end{tabular}

\section*{Controller}

Use the Control type, cntrlType parameter to specify one of these control options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline PI & \begin{tabular}{l} 
Proportional-integral (PI) control with tracking windup and feed-forward \\
gains.
\end{tabular} \\
\hline Scheduled PI & \begin{tabular}{l} 
PI control with tracking windup and feed-forward gains that are a function \\
of vehicle velocity.
\end{tabular} \\
\hline Predictive & \begin{tabular}{l} 
Optimal single-point preview (look ahead) control model developed by C. C. \\
MacAdam \(1,2,3\). The model represents driver steering control behavior \\
during path-following and obstacle avoidance maneuvers. Drivers preview \\
(look ahead) to follow a predefined path. To implement the MacAdam model, \\
the block:
\end{tabular} \\
\begin{tabular}{l} 
- Represents the dynamics as a linear single track (bicycle) vehicle \\
- Minimizes the previewed error signal at a single point \(T^{*}\) seconds ahead \\
in time
\end{tabular} \\
\begin{tabular}{l} 
Accounts for the driver lag deriving from perceptual and neuromuscular \\
mechanisms
\end{tabular} \\
\hline
\end{tabular}

\section*{Shift}

Use the Shift type, shftType parameter to specify one of these shift options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline None & \begin{tabular}{l} 
No transmission. Block outputs a constant gear of 1. \\
Use this setting to minimize the number of parameters you need to generate \\
acceleration and braking commands to track forward vehicle motion. This \\
setting does not allow reverse vehicle motion.
\end{tabular} \\
\hline \begin{tabular}{l} 
Reverse, Neutral, \\
Drive
\end{tabular} & \begin{tabular}{l} 
Block uses a Stateflow \({ }^{\circledR}\) chart to model reverse, neutral, and drive gear shift \\
scheduling.
\end{tabular} \\
\begin{tabular}{l} 
Use this setting to generate acceleration and braking commands to track \\
forward and reverse vehicle motion using simple reverse, neutral, and drive \\
gear shift scheduling. Depending on the vehicle state and vehicle velocity \\
feedback, the block uses the initial gear and time required to shift to shift \\
the vehicle up into drive or down into reverse or neutral.
\end{tabular} \\
\begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the vehicle \\
speed. For reverse gears, the block uses an acceleration command to \\
generate torque and a brake command to reduce vehicle speed.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Scheduled & \begin{tabular}{l} 
Block uses a Stateflow chart to model reverse, neutral, park, and N-speed \\
gear shift scheduling. \\
Use this setting to generate acceleration and braking commands to track \\
forward and reverse vehicle motion using reverse, neutral, park, and N- \\
speed gear shift scheduling. Depending on the vehicle state and vehicle \\
velocity feedback, the block uses these parameters to determine the:
\end{tabular} \\
& \begin{tabular}{l} 
- Initial gear \\
- \\
\\
\\
\\
\hline - Upshift and downshift accelerator pedal positions \\
- \(\quad\) Timing for shifting and engaging forward and reverse from neutral \\
For neutral gears, the block uses braking commands to control the vehicle \\
speed. For reverse gears, the block uses an acceleration command to \\
generate torque and a brake command to reduce vehicle speed.
\end{tabular} \\
\hline \begin{tabular}{l} 
Block uses the input gear, vehicle state, and velocity feedback to generate \\
acceleration and braking commands to track forward and reverse vehicle \\
motion. \\
External \\
\begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the vehicle \\
speed. For reverse gears, the block uses an acceleration command to \\
generate torque and a brake command to reduce vehicle speed.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Gear Signal}

Use the Output gear signal parameter to create the GearCmd output port. The GearCmd signal contains the integer value of the commanded vehicle gear.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Controller: PI Speed-Tracking}

If you set the control type to PI or Scheduled PI, the block implements proportional-integral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.
\begin{tabular}{|l|c|}
\hline Setting & Equation \\
\hline PI & \(y=\frac{K_{f f}}{v_{\text {nom }}} v_{r e f}+\frac{K_{p} e_{r e f}}{v_{\text {nom }}}+\int\left(\frac{K_{i} e_{r e f}}{v_{\text {nom }}}+K_{a w} e_{o u t}\right) d t+K_{g} \theta\) \\
\hline
\end{tabular}

\section*{Setting Equation}
\begin{tabular}{|l|l} 
Scheduled PI & \(y=\frac{K_{f f}(v)}{v_{\text {nom }}} v_{\text {ref }}+\frac{K_{p}(v) e_{\text {ref }}}{v_{\text {nom }}}+\int\left(\frac{K_{i}(v) e_{\text {ref }}}{v_{\text {nom }}}+K_{\text {aw }} e_{o u t}\right) e_{r e f} d t+K_{g}(v) \theta\). \\
\hline
\end{tabular}
where:
\[
\begin{aligned}
& e_{\text {ref }}=v_{\text {ref }}-v \\
& e_{\text {out }}=y_{\text {sat }}-y \\
& y_{\text {sat }}=\left\{\begin{array}{cc}
-1 & y<-1 \\
y & -1 \leq y \leq 1 \\
1 & 1<y
\end{array}\right.
\end{aligned}
\]

The velocity error low-pass filter uses this transfer function.
\[
H(s)=\frac{1}{\tau_{e r r} s+1} \text { for } \tau_{\text {err }}>0
\]

To calculate the acceleration and braking commands, the block uses these equations.
\[
\begin{aligned}
& y_{\text {acc }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}<0 \\
y_{\text {sat }} & 0 \leq y_{\text {sat }} \leq 1 \\
1 & 1<y_{\text {sat }}
\end{array}\right. \\
& y_{\text {dec }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}>0 \\
-y_{\text {sat }} & -1 \leq y_{\text {sat }} \leq 0 \\
1 & y_{\text {sat }}<-1
\end{array}\right.
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(v_{\text {nom }}\) & Nominal vehicle speed \\
\(K_{p}\) & Proportional gain \\
\(K_{i}\) & Integral gain \\
\(K_{a w}\) & Anti-windup gain \\
\(K_{f f}\) & Velocity feed-forward gain \\
\(K_{g}\) & Grade angle feed-forward gain \\
\(\theta\) & Grade angle \\
\(\tau_{\text {err }}\) & Error filter time constant \\
\(y\) & Nominal control output magnitude \\
\(y_{\text {sat }}\) & Saturated control output magnitude \\
\(e_{\text {ref }}\) & Velocity error \\
\(e_{\text {out }}\) & Difference between saturated and nominal control outputs \\
\(y_{a c c}\) & Acceleration signal \\
\(y_{d e c}\) & Braking signal \\
\(v\) & Velocity feedback signal
\end{tabular}
\(v_{\text {ref }} \quad\) Reference velocity signal

\section*{Controller: Predictive Speed-Tracking}

If you set the Control type, cntrlType parameter to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam \({ }^{1,2,3}\). The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:
- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T* seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

\section*{Vehicle Dynamics}

For longitudinal motion, the block implements these linear dynamics.
\[
\begin{aligned}
& x_{1}=v \\
& \dot{x}_{1}=x_{2}=\frac{K_{p t}}{m}-g \sin (\gamma)+F_{r} x_{1}
\end{aligned}
\]

In matrix notation:
\[
\dot{x}=F x+g \bar{u}
\]
where:
\[
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\]
\[
F=\left[\begin{array}{cc}
0 & 1 \\
\frac{F_{r}}{m} & 0
\end{array}\right]
\]
\[
g=\left[\begin{array}{c}
0 \\
\frac{K_{p t}}{m}
\end{array}\right]
\]
\[
\bar{u}=u-\frac{m^{2}}{K_{p t}} g \sin (\gamma)
\]

The block uses this equation for the rolling resistance.
\[
F_{r}=-\left[\tanh \left(x_{1}\right)\left(\frac{a_{r}}{x_{1}}+c_{r} x_{1}\right)+b_{r}\right]
\]

The single-point model assumes a minimum previewed error signal at a single point \(T^{*}\) seconds ahead in time. \(a^{*}\) is the driver ability to predict the future vehicle response based on the current steering control input. \(b^{*}\) is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.
\[
\begin{aligned}
& a^{*}=\left(T^{*}\right) m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{(n+1)!}\right] g e \\
& b^{*}=m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{n!}\right]
\end{aligned}
\]
where:
\[
m^{T}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\]

The equations use these variables.
\begin{tabular}{ll}
\(a, b\) & Forward and rearward tire location, respectively \\
\(m\) & Vehicle mass \\
\(I\) & Vehicle rotational inertia \\
\(a^{*}, \boldsymbol{b}^{*}\) & Driver prediction scalar and vector gain, respectively \\
\(\boldsymbol{x}\) & Predicted vehicle state vector \\
\(v\) & Longitudinal velocity \\
\(\boldsymbol{F}\) & System matrix \\
\(K_{p t}\) & Tractive force and brake limit \\
\(\gamma\) & Grade angle \\
\(\boldsymbol{g}\) & Control coefficient vector \\
\(g\) & Gravitational constant \\
\(T^{*}\) & Preview time window \\
\(f\left(t+T^{*}\right)\) & Previewed path input T* seconds ahead \\
\(U\) & Forward vehicle velocity \\
\(\boldsymbol{m}^{T}\) & Constant observer vector; provides vehicle lateral position \\
\(F_{r}\) & Rolling resistance \\
\(a_{r}\) & Static rolling and driveline resistance \\
\(b_{r}\) & Linear rolling and driveline resistance \\
\(c_{r}\) & Aerodynamic rolling and driveline resistance
\end{tabular}

\section*{Optimization}

The single-point model implemented by the block finds the steering command that minimizes a local performance index, \(J\), over the current preview interval, \((t, t+T)\).
\[
J=\frac{1}{T} \int^{t+T}[f(\eta)-y(\eta)]^{2} d \eta
\]

To minimize \(J\) with respect to the steering command, this condition must be met.
\[
\frac{d J}{d u}=0
\]

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error \(T^{*}\) seconds ahead \({ }^{1,2,3}\).
\[
u^{o}(t)=u(t)+\frac{e\left(t+T^{*}\right)}{a^{*}}
\]

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.
\[
T^{*}=\frac{L}{U}
\]

The equations use these variables.
\begin{tabular}{ll}
\(T^{*}\) & Preview time window \\
\(f\left(t+T^{*}\right)\) & Previewed path input \(T^{*}\) sec ahead \\
\(y\left(t+T^{*}\right)\) & Previewed plant output \(T^{*}\) sec ahead \\
\(e\left(t+T^{*}\right)\) & Previewed error signal \(T^{*}\) sec ahead \\
\(u(t), u^{\circ}(t)\) & Steer angle and optimal steer angle, respectively \\
\(L\) & Preview distance \\
\(J\) & Performance index \\
\(U\) & Forward (longitudinal) vehicle velocity
\end{tabular}

\section*{Driver Lag}

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.
\[
H(s)=e^{-s \tau}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\tau\) & Driver transport delay \\
\(y\left(t+T^{*}\right)\) & Previewed plant output \(T^{*}\) sec ahead \\
\(e\left(t+T^{*}\right)\) & Previewed error signal \(T^{*}\) sec ahead \\
\(u(t), u^{o}(t)\) & Steer angle and optimal steer angle, respectively \\
\(J\) & Performance index
\end{tabular}

\section*{Ports}

\section*{Input}

VelRef - Reference vehicle velocity
scalar
Reference velocity, \(v_{\text {ref, }}\) in \(\mathrm{m} / \mathrm{s}\).

\section*{EnblAccelOvr - Enable acceleration command override scalar}

Enable acceleration command override.

\section*{Dependencies}

To enable this port, select Acceleration override.
Data Types: Boolean
Accel0vrCmd - Acceleration override command scalar

Acceleration override command, normalized from 0 through 1.

\section*{Dependencies}

To enable this port, select Acceleration override.
Data Types: double
AccelHld - Acceleration hold
scalar
Boolean signal that holds the acceleration command at the current value.

\section*{Dependencies}

To enable this port, select Acceleration hold.
Data Types: Boolean
AccelZero - Disable acceleration command
scalar
Disable acceleration command.
Dependencies
To enable this port, select Acceleration disable.
Data Types: Boolean
EnblDecelOvr - Enable deceleration command override scalar

Enable deceleration command override.

\section*{Dependencies}

To enable this port, select Deceleration override.
Data Types: Boolean

\section*{DecelOvrCmd - Deceleration override command scalar}

Deceleration override command, normalized from 0 through 1.

\section*{Dependencies}

To enable this port, select Deceleration override.
Data Types: double

\section*{DecelHld - Deceleration hold \\ scalar}

Boolean signal that holds the deceleration command at the current value.

\section*{Dependencies}

To enable this port, select Deceleration hold.
Data Types: Boolean
DecelZero - Disable deceleration command
scalar

Disable deceleration command.

\section*{Dependencies}

To enable this port, select Deceleration disable.

\section*{Data Types: Boolean}

ExtGear - Gear
scalar
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this port, set Shift type, shftType to External.

\section*{VelFdbk - Longitudinal vehicle velocity}
scalar
Longitudinal vehicle velocity, \(U\), in the vehicle-fixed frame, in \(\mathrm{m} / \mathrm{s}\).

\section*{Grade - Road grade angle \\ scalar}

Road grade angle, \(\theta\) or \(\gamma\), in deg.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Variable & Description \\
\hline Accel & & \(y_{a c c}\) & Commanded vehicle acceleration, normalized from 0 through 1 \\
\hline Decel & & \(y_{\text {dec }}\) & Commanded vehicle deceleration, normalized from 0 through 1 \\
\hline \multicolumn{3}{|l|}{Gear} & Integer value of commanded gear \\
\hline \multicolumn{3}{|l|}{Clutch} & Clutch command \\
\hline \multicolumn{2}{|l|}{Err} & \(e_{\text {ref }}\) & Difference in reference vehicle speed and vehicle speed \\
\hline \multicolumn{2}{|l|}{ErrSqrSum} & \[
\int_{0}^{t} e_{r e f}{ }^{2} d t
\] & Integrated square of error \\
\hline \multicolumn{2}{|l|}{ErrMax} & \(\max \left(e_{r e f}(t)\right)\) & Maximum error during simulation \\
\hline \multicolumn{2}{|l|}{ErrMin} & \(\min \left(e_{r e f}(t)\right)\) & Minimum error during simulation \\
\hline \multirow[t]{8}{*}{ExtActions} & \multicolumn{2}{|l|}{EnblAccelOvr} & Override the accelerator command with an input acceleration command \\
\hline & \multicolumn{2}{|l|}{Accel0vrCmd} & Input accelerator override command \\
\hline & \multicolumn{2}{|l|}{AccelHld} & Hold the acceleration command at the current value \\
\hline & \multicolumn{2}{|l|}{AccelZero} & Disable the acceleration command \\
\hline & \multicolumn{2}{|l|}{EnblDecel0vr} & Override the decelerator command with an input deceleration command \\
\hline & \multicolumn{2}{|l|}{Decel0vrCmd} & Input deceleration override command \\
\hline & \multicolumn{2}{|l|}{DecelHld} & Hold the decelerator command at current value \\
\hline & \multicolumn{2}{|l|}{DecelZero} & Disable the decelerator command \\
\hline
\end{tabular}

\section*{AccelCmd - Commanded vehicle acceleration}
scalar
Commanded vehicle acceleration, \(y_{\text {acc }}\), normalized from 0 through 1.
DecelCmd - Commanded vehicle deceleration
scalar
Commanded vehicle deceleration, \(y_{\text {dec }}\), normalized from 0 through 1.

\section*{GearCmd - Commanded vehicle gear}
scalar
Integer value of commanded vehicle gear.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this port, select Output gear signal.

\section*{Parameters}

\section*{External Actions}

Accelerator override - Override acceleration command
off (default) | on
Select to override the acceleration command with an input acceleration command.

\section*{Dependencies}

Selecting this parameter creates the EnblAccelOvr and AccelOvrCmd input ports.

\section*{Accelerator hold - Hold acceleration command \\ off (default) | on}

Select to hold the acceleration command.

\section*{Dependencies}

Selecting this parameter creates the AccelHld input port.

\section*{Accelerator disable - Disable acceleration command off (default) | on}

Select to disable the acceleration command.

\section*{Dependencies}

Selecting this parameter creates the AccelZero input port.

\section*{Decelerator override - Override deceleration command} off (default) | on

Select to override the deceleration command with an input deceleration command.

\section*{Dependencies}

Selecting this parameter creates the EnblDecelOvr and DecelOvrCmd input ports.

\section*{Decelerator hold - Hold deceleration command off (default) | on}

Select to hold the deceleration command.

\section*{Dependencies}

Selecting this parameter creates the DecelHld input port.

\section*{Decelerator disable - Disable deceleration command} off (default) | on

Select to disable the deceleration command.

\section*{Dependencies}

Selecting this parameter creates the DecelZero input port.

\section*{Configuration}

\section*{Control type, cntrlType - Longitudinal control}

PI (default)|Scheduled PI|Predictive
Type of longitudinal control.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline PI & \begin{tabular}{l} 
Proportional-integral (PI) control with tracking windup and feed-forward \\
gains.
\end{tabular} \\
\hline Scheduled PI & \begin{tabular}{l} 
PI control with tracking windup and feed-forward gains that are a function \\
of vehicle velocity.
\end{tabular} \\
\hline Predictive & \begin{tabular}{l} 
Optimal single-point preview (look ahead) control model developed by C. C. \\
MacAdam \(1,2,3\) \\
during path-following model represents driver steering control behavior obstacle avoidance maneuvers. Drivers preview \\
(look ahead) to follow a predefined path. To implement the MacAdam model, \\
the block:
\end{tabular} \\
\begin{tabular}{l} 
- Represents the dynamics as a linear single track (bicycle) vehicle \\
- Minimizes the previewed error signal at a single point \(T^{*}\) seconds ahead \\
in time
\end{tabular} \\
\begin{tabular}{l} 
Accounts for the driver lag deriving from perceptual and neuromuscular \\
mechanisms
\end{tabular} \\
\hline
\end{tabular}

Shift type, shftType - Shift type
None (default)|Reverse, Neutral, Drive|Scheduled|External
Shift type.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline None & No transmission. Block outputs a constant gear of 1. \\
\begin{tabular}{l} 
Use this setting to minimize the number of parameters you need to generate \\
acceleration and braking commands to track forward vehicle motion. This \\
setting does not allow reverse vehicle motion.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Reverse, Neutral, \\
Drive
\end{tabular} & \begin{tabular}{l} 
Block uses a Stateflow chart to model reverse, neutral, and drive gear shift \\
scheduling. \\
Use this setting to generate acceleration and braking commands to track \\
forward and reverse vehicle motion using simple reverse, neutral, and drive \\
gear shift scheduling. Depending on the vehicle state and vehicle velocity \\
feedback, the block uses the initial gear and time required to shift to shift \\
the vehicle up into drive or down into reverse or neutral.
\end{tabular} \\
\hline \begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the vehicle \\
speed. For reverse gears, the block uses an acceleration command to \\
generate torque and a brake command to reduce vehicle speed.
\end{tabular} \\
\hline \begin{tabular}{l} 
Block uses a Stateflow chart to model reverse, neutral, park, and N-speed \\
gear shift scheduling.
\end{tabular} \\
\begin{tabular}{l} 
Use this setting to generate acceleration and braking commands to track \\
forward and reverse vehicle motion using reverse, neutral, park, and N- \\
speed gear shift scheduling. Depending on the vehicle state and vehicle \\
velocity feedback, the block uses these parameters to determine the:
\end{tabular} \\
- Initial gear \\
- Upshift and downshift accelerator pedal positions \\
- Upshift and downshift velocity \\
- Timing for shifting and engaging forward and reverse from neutral \\
For neutral gears, the block uses braking commands to control the vehicle \\
speed. For reverse gears, the block uses an acceleration command to \\
generate torque and a brake command to reduce vehicle speed.
\end{tabular}

\section*{Reference and feedback units, velUnits - Velocity units}
\(\mathrm{m} / \mathrm{s}\) (default)
Vehicle velocity reference and feedback units.

\section*{Dependencies}

If you set Control type, cntrlType control type to Scheduled or Scheduled PI, the block uses the Reference and feedback units, velUnits for the Nominal speed, vnom parameter dimension.

If you set Shift Type, shftType to Scheduled, the block uses the Longitudinal velocity units, velUnits for these parameter dimensions:

\section*{- Upshift velocity data table, upShftTbl}
- Downshift velocity data table, dwnShftTbl

Output gear signal - Create GearCmd output port off (default) | on

Specify to create output port GearCmd.

\section*{Control}

Longitudinal
Proportional gain, Kp - Gain
10 (default) | scalar
Proportional gain, \(K_{p}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
Integral gain, Ki - Gain
5 (default) | scalar
Proportional gain, \(K_{i}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.

\section*{Velocity feed-forward, Kff - Gain}
. 1 (default) | scalar
Velocity feed-forward gain, \(K_{f f}\) dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
Grade angle feed-forward, Kg - Gain
0 (default) | scalar
Grade angle feed-forward gain, \(K_{g}\), in \(1 /\) deg.

\section*{Dependencies}

To create this parameter, set Control type to PI.

\section*{Velocity gain breakpoints, VehVelVec - Breakpoints}
[0 100] (default)|vector
Velocity gain breakpoints, VehVelVec, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.
Velocity feed-forward gain values, KffVec - Gain [. 1 .1] (default)|vector

Velocity feed-forward gain values, KffVec, as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Proportional gain values, KpVec - Gain}
[10 10] (default) |vector
Proportional gain values, \(K p V e c\), as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Integral gain values, KiVec - Gain}
[5 5] (default) | vector
Integral gain values, KiVec, as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.
Grade angle feed-forward values, KgVec - Grade gain
[0 0] (default) |vector
Grade angle feed-forward values, KgVec , as a function of vehicle velocity, in \(1 / \mathrm{deg}\).

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Nominal speed, vnom - Nominal vehicle speed}

5 (default) | scalar
Nominal vehicle speed, \(v_{\text {nom }}\), in units specified by the Reference and feedback units, velUnits parameter. The block uses the nominal speed to normalize the controller gains.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.
Anti-windup, Kaw - Gain
1 (default) | scalar
Anti-windup gain, \(K_{a w}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.
Error filter time constant, tauerr - Filter . 01 (default)| scalar

Error filter time constant, \(\tau_{\text {err, }}\) in s . To disable the filter, enter 0 .

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.

\section*{Predictive}

Vehicle mass, m Mass
1500 (default) | scalar
Vehicle mass, \(m\), in kg.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Effective vehicle total tractive force, Kpt - Tractive force}

3000 (default) | scalar
Effective vehicle total tractive force, \(K_{p t}\), in N.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Driver response time, tau - Tau
. 1 (default)| scalar
Driver response time, \(\tau\), in s.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Preview distance, L - Distance
2 (default) | scalar
Driver preview distance, \(L\), in \(m\).

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling resistance coefficient, aR - Resistance
200 (default) | scalar
Static rolling and driveline resistance coefficient, \(a_{R}\), in N. Block uses the parameter to estimate the constant acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling and driveline resistance coefficient, bR - Resistance
2.5 (default) | scalar

Rolling and driveline resistance coefficient, \(b_{R}\), in \(\mathrm{N} \cdot \mathrm{s} / \mathrm{m}\). Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Aerodynamic drag coefficient, cR — Drag
. 5 (default) | scalar
Aerodynamic drag coefficient, \(c_{R}\), in \(\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2\). Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Gravitational constant, g-Gravitational constant \\ 9.81 (default) | scalar}

Gravitational constant, g , in \(\mathrm{m} / \mathrm{s}^{\wedge} 2\).

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Shift}

Reverse, Neutral, Drive
Initial gear, GearInit - Initial gear
0 (default) | scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

\section*{Time required to shift, tShift - Time}

\section*{. 1 (default)| scalar}

Time required to shift, \(t\) Shift, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive.
Scheduled
Initial gear, GearInit - Initial gear
0 (default) | scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .
```

Up and down shift accelerator pedal positions, pdlVec - Pedal position
breakpoints
[0.1 0.4 0.5 0.9] (default)|[1-by-m] vector

```

Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, \(m\).

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Upshift velocity data table, upShftTbl - Table}
[m-by-n] array
Upshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1 .

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1 , is the upshift velocity for the neutral gear.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.
Downshift velocity data table, dwnShftTbl - Table
[m-by-n] array

Downshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1 .

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1 , is the downshift velocity for the neutral gear.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.
Time required to shift, tClutch - Time

\section*{. 5 (default)| scalar}

Time required to shift, \(t_{\text {Clutch }}\), in s .

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Time required to engage reverse from neutral, tRev - Time}
. 5 (default) | scalar
Time required to engage reverse from neutral, \(t_{\text {Rev }}\), in s .

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.
Time required to engage park from neutral, tPark - Time

\section*{120 (default) | scalar}

Time required to engage park from neutral, \(t_{\text {Park }}\), in s .

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{References}
[1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". Journal of Dynamic Systems, Measurement, and Control. Vol. 102, Number 3, Sept. 1980.
[2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". IEEE Transactions on Systems, Man, and Cybernetics. Vol. 11, Issue 6, June 1981.
[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Drive Cycle Source | Vehicle Body Total Road Load
Introduced in R2017a

\section*{Transmission Blocks}

\title{
Automated Manual Transmission
}

Ideal automated manual transmission
Library:


\section*{Description}

The Automated Manual Transmission block implements an ideal automated transmission (AMT). An AMT is a manual transmission with additional actuators and an electronic control unit (ECU) to regulate clutch and gear selection based on commands from a controller. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable.

Use the block for:
- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Automated Manual Transmission block calculates:
- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a function of \\
the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & Efficiency determined from a 4D lookup table that is a function of: \\
& • \begin{tabular}{l} 
Gear \\
\\
\\
\\
\\
\\
\\
\end{tabular} • \begin{tabular}{l} 
Input torque \\
\\
\hline
\end{tabular} Input speed \\
\hline
\end{tabular}

\section*{Clutch Control}

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select Control type parameter Ideal integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select Control type parameter External control.

\section*{Clutch Lock-Up and Clutch Friction}

Based on the clutch lock-up condition, the block implements one of these friction models.
\begin{tabular}{|c|c|c|}
\hline If & Clutch Condition & Friction Model \\
\hline \begin{tabular}{l}
\[
\omega_{i} \neq N \omega_{d}
\] \\
or
\[
T_{S}<\left|T_{f}-N w_{i} b_{i}\right|
\]
\end{tabular} & Unlocked & \begin{tabular}{l}
\[
T_{f}=T_{k}
\] \\
where,
\[
\begin{aligned}
& T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(\frac{w_{i}}{N}-w_{d}\right)\right] \\
& T_{s}=F_{c} R_{e f f} \mu_{s} \\
& R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{\left.3\left(R_{o}{ }^{2}-R_{i}\right)^{2}\right)}
\end{aligned}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\omega_{i}=N \omega_{t}
\] \\
and
\[
T_{S} \geq\left|T_{f}-N b_{i} \omega_{i}\right|
\]
\end{tabular} & Locked & \(T_{f}=T_{s}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{t}\) & Output drive shaft speed \\
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(b_{i}\) & Viscous damping \\
\(F_{c}\) & Applied clutch force \\
\(N\) & Engaged gear \\
\(T_{f}\) & Frictional torque \\
\(T_{k}\) & Kinetic frictional torque \\
\(T_{s}\) & Static frictional torque \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius \\
\(\mu_{s}\) & Coefficient of static friction \\
\(\mu_{k}\) & Coefficient of kinetic friction
\end{tabular}

\section*{Locked Rotational Dynamics}

To model the rotational dynamics when the clutch is locked, the block implements these equations.
\[
\begin{aligned}
& \dot{\omega}_{d} J_{N}=\eta_{N} T_{d}-\frac{\omega_{i}}{N} b_{N}+N T_{i} \\
& \omega_{i}=N \omega_{d}
\end{aligned}
\]

The block determines the input torque, \(T_{i}\), through differentiation.
The equations use these variables.
\begin{tabular}{ll}
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.
\[
\dot{\omega}_{d} J_{N}=N T_{f}-\omega_{d} b_{N}+T_{d}
\]
where:
\begin{tabular}{ll}
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline \multirow[t]{5}{*}{PwrIn} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrEng & Engine power & \(P_{\text {eng }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrDif frntl & Differential power & \(P_{\text {diff }}\) & \(\omega_{d} T_{d}\) \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrEff Loss & Mechanical power loss & \(P_{\text {effloss }}\) & \(\omega_{d} T_{d}\left(\eta_{N}-1\right)\) \\
\hline & & PwrDam ploss & Mechanical damping loss & \[
\begin{aligned}
& P_{\text {dampl }} \\
& \text { oss }
\end{aligned}
\] & \(-b_{N} \omega_{d}^{2}-b_{i n} \omega_{i}^{2}\) \\
\hline & & PwrClt chLoss & Clutch power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When locked: 0 \\
When unlocked:
\[
-T_{k}\left(\omega_{i}-N \omega_{d}\right)
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & \begin{tabular}{l} 
Varia \\
ble
\end{tabular} & Equations \\
\hline & \begin{tabular}{l} 
PwrStored - Stored energy \\
rate of change \\
\(-\quad\) Positive signals indicate an \\
increase \\
• Negative signals indicate a \\
decrease
\end{tabular} & \begin{tabular}{l} 
PwrSto \\
redTra \\
ns
\end{tabular} & \begin{tabular}{l} 
Rate change in \\
rotational \\
kinetic energy
\end{tabular} & \(P_{\text {str }}\) & When locked: \\
\hline\(\dot{\omega}_{i} \omega_{i}\left(J_{\text {in }}+\frac{J_{N}}{N^{2}}\right)\)
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear rotational inertia \\
\(J_{i n}\) & Flywheel rotational inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(N\) & Engaged gear ratio \\
\(T_{i}\) & Applied input torque, typically from the engine crankshaft or dual mass flywheel \\
& damper \\
\(T_{d}\) & Applied load torque, typically from the differential or drive shaft \\
\(\omega_{d}\) & Initial input drive shaft rotational velocity \\
\(\omega_{i,}, \omega_{i}\) & Applied drive shaft angular speed and acceleration
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Gear - Gear number to engage \\ scalar}

Integer value of gear number to engage.

\section*{CltchCmd - Clutch command}
scalar
Clutch pressure command.

\section*{Dependencies}

To create this port, select Control type parameter External control.

\section*{EngTrq - Applied input torque \\ scalar}

Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied load torque}
scalar
Applied load torque, \(T_{d}\), typically from the differential or driveshaft, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature}

\section*{scalar}

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal contains these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multirow[t]{2}{*}{Eng} & \multicolumn{2}{|l|}{EngTrq} & Input applied torque & \(T_{i}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{EngSpd} & Input drive shaft speed & \(\omega_{i}\) & rad/s \\
\hline \multirow[t]{2}{*}{Diff} & \multicolumn{2}{|l|}{DiffTrq} & Output drive shaft torque & \(T_{t}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{DiffSpd} & Output drive shaft speed & \(\omega_{t}\) & rad/s \\
\hline \multirow[t]{2}{*}{Cltch} & \multicolumn{2}{|l|}{CltchForce} & Applied clutch force & \(F_{c}\) & N \\
\hline & \multicolumn{2}{|l|}{CltchLocked} & \begin{tabular}{l}
Clutch lock status, Boolean: \\
- Locked - 0 \\
- Unlocked - 1
\end{tabular} & N/A & N/A \\
\hline \multirow[t]{4}{*}{Trans} & \multicolumn{2}{|l|}{TransSpdRatio} & Speed ratio at time \(t\) & \(\phi(t)\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransEta} & Ratio of output power to input power & \(\eta\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransGearCmd} & Commanded gear & \(N_{\text {cmd }}\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransGear} & Engaged gear & \(N\) & N/A \\
\hline \multirow[t]{3}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrEng & Engine power & \(P_{\text {eng }}\) & W \\
\hline & & PwrDiffrntl & Differential power & \(P_{\text {diff }}\) & W \\
\hline & PwrNotTrnsfr d & PwrEffLoss & Mechanical power loss & \(P_{\text {effloss }}\) & W \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Signal } & Description & Variable & Units \\
\hline \multirow{4}{*}{} & \multirow{3}{*}{} & PwrDampLoss & \begin{tabular}{l} 
Mechanical damping \\
loss
\end{tabular} & \(P_{\text {damploss }}\) & W \\
\cline { 3 - 6 } & & PwrCltchLoss & Clutch power loss & \(P_{\text {mech }}\) & W \\
\cline { 3 - 6 } & PwrStored & PwrStoredTrans & \begin{tabular}{l} 
Rate change in \\
rotational kinetic \\
energy
\end{tabular} & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

EngSpd - Angular speed
scalar
Applied drive shaft angular speed input, \(\omega_{i}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed output, \(\omega_{d}\), in rad/s.

\section*{Parameters}

\section*{Control type - Specify control type}

Ideal integrated controller (default)|External control
The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select Control type parameter Ideal integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select Control type parameter External control.

\section*{Dependencies}

This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline External control & CltchCmd \\
\hline
\end{tabular}

\section*{Efficiency factors - Specify efficiency calculation}

Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a function of \\
the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & \begin{tabular}{ll} 
Efficiency determined from a 4D lookup table that is a function of: \\
& - \\
& Gear \\
& Input torque \\
& - \\
& Input speed \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Dependencies
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency torque breakpoints, Trq_bpts \\
Efficiency speed breakpoints, omega_bpts \\
Efficiency temperature breakpoints, Temp_bpts \\
Efficiency lookup table, eta_tbl
\end{tabular} \\
\hline
\end{tabular}

\section*{Transmission}
```

Input shaft inertia, Jin - Inertia
. 01 (default) | scalar

```

Input shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Input shaft damping, bin - Damping
. 001 (default) | scalar
Input shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Initial input velocity, omegain_o - Angular velocity
0 (default) | scalar
Angular velocity, in rad/s.
Gear number vector, \(\mathbf{G}\) - Specify number of transmission speeds
[-1, 0, 1, 2, 3, 4, 5] (default) | vector
Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G To \\
\hline \begin{tabular}{l} 
Four transmission speeds, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline \begin{tabular}{l} 
Three transmission speeds, including \\
neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, including \\
neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.
```

Efficiency torque breakpoints, Trq_bpts - Breakpoints

```
[25, 50, 75, 100, 150, 200, 250] (default)|vector

Torque breakpoints for efficiency table, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints
[52.4 78.5 105131157183209262314419 524] (default)|vector
Speed breakpoints for efficiency table, rad/s.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Efficiency temperature breakpoints, Temp_bpts - Breakpoints}
[313 358] (default)|vector
Temperature breakpoints for efficiency table, in K.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear ratio vector, \(N\) - Ratio of input speed to output speed
[-4.47, 1, 4.47, 2.47, 1.47, 1, 0.8] (default)|vector
Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Gear Ratios For & Set Gear number, G To & Set Gear ratio, N To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([-4.47,1,4.47,2.47,1.47,1,0.8]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.
```

Transmission inertia vector, Jout - Gear rotational inertia
[0.128 0.01 0.128 0.1 0.062 0.028 0.01] (default)|vector

```

Vector of gear rotational inertias, with indices corresponding to the inertias specified in Gear number, \(\mathbf{G}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia For & Set Gear number, G To & Set Inertia, J To \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & {\([0.01,2.28,2.04,0.32,0.028]\)} \\
\hline \begin{tabular}{ll} 
Inertia for five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([2.28,0.01,2.28,2.04,0.32,0.028\)} \\
& & \(0.01]\) \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

Transmission damping vector, bout - Gear viscous damping coefficient
[.003 . 001 . 003 . 0025 . 002 . 001 .001] (default) |vector
Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in Gear number, G, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping For & Set Gear number, G To & Set Damping, b To \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003,0.0025\),} \\
\(0.002,0.001]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Five gears, including reverse \\
and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001,0.003\),} \\
\(0.0025,0.002,0.001,0.001]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Efficiency vector, eta - Gear efficiency}
[0.9, 0.9, 0.9, 0.9, 0.9, 0.95, 0.95] (default)|vector
Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency For & Set Gear number, G To & Set Efficiency, eta To \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline Five gears, including reverse & {\([-1,0,1,2,3,4,5]\)} & {\([0.9,0.9,0.9\),} \\
and neutral & & \(0.9,0.9,0.95,0.95]\) \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.
Efficiency lookup table, eta_tbl - Gear efficiency
array
Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Initial output velocity, omegaout_o - Transmission
0 (default) | scalar
Transmission initial output rotational velocity, \(\omega_{\text {to }}\), in rad/s. If you select Clutch initially locked, the block ignores the Initial output velocity, omega_o parameter value.

Initial gear, G_o - Engaged gear
0 (default) | scalar
Initial gear to engage, \(G_{0}\).

\section*{Clutch and Synchronizer}

Clutch pressure time constant, tauc - Time
. 02 (default) | scalar
Pressure input filter time constant, \(\tau_{c}\), in s.
Synchronization time, ts - Time
. 25 (default) | scalar
Time required for gear selection and synchronization, \(t_{s}\), in s .

\section*{Clutch time, tc - Time}
. 5 (default) | scalar
Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Dependencies}

To create this parameter, select Control type parameter Ideal integrated controller.

\section*{Effective clutch radius, R - Radius}
. 2 (default) | scalar
The effective radius, \(R_{\text {eff }}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{0} 2-R_{i}{ }^{2}\right)}
\]

The equation uses these variables.
\(R_{0} \quad\) Annular disk outer radius
\(R_{i} \quad\) Annular disk inner radius
Clutch force gain, K_c - Force
5e3 (default) | scalar
Open loop lock-up clutch gain, \(K_{c}\), in N .

\section*{Clutch static friction coefficient, mus - Coefficient \\ 0.6 (default) | scalar}

Dimensionless clutch disc coefficient of static friction, \(\mu_{s}\).
Clutch kinematic friction coefficient, muk - Coefficient
0.4 (default) | scalar

Dimensionless clutch disc coefficient of kinetic friction, \(\mu_{k}\).

\section*{Clutch initially locked - Select to initially lock clutch}
off (default) |on
Select to lock clutch initially.

\section*{Dependencies}

To create this parameter, select Control type parameter Ideal integrated controller.
Synchronizer initially locked - Select to initially lock synchronizer
off (default) | on
Select to initially lock synchronizer.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

AMT Controller | Dual Clutch Transmission | Continuously Variable Transmission | Ideal Fixed Gear Transmission

Introduced in R2017a

\section*{AMT Controller}

Automated manual transmission controller with clutch open, close, and synchronization timing
Library: Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The AMT Controller block implements an automated manual transmission (AMT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

\section*{Ports}

\section*{Inputs}

GearReq - Gear number to engage
scalar
Gear number request, \(G_{\text {req }}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearReq & Gear number request & \(G_{\text {req }}\) \\
\hline GearEngd & Nominal gear commanded by the controller & \(G_{o}\) \\
\hline Cltch & Clutch pressure command for gears, between 0 and 1 & NA \\
\hline
\end{tabular}

\section*{GearEffct - Effective gear for shifting}
scalar
Effective gear for shifting. The block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

\section*{Cltch - Command for clutch pressure}
scalar
Clutch pressure command, between 0 and 1 .

\section*{Parameters}

Initial gear, G_o - Engaged gear
0 (default) | scalar
Initial gear to engage, \(G_{0}\).
Clutch actuation time, tc - Time
. 1 (default) | scalar
Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .
Synchronizer time, ts - Time
. 01 (default) | scalar
Time required for gear selection and synchronization, \(t_{s}\), in s .
Sample period, dt - Time
- 1 (default)| scalar

Sample period, \(d t\), in s.

\section*{Clutch initially locked - Select to initially lock clutch} off (default) | on

Selecting this parameter initially locks the clutch.
Synchronizer initially locked - Select to initially lock synchronizer off (default) | on

Selecting this parameter initially locks the synchronizer.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).

\section*{See Also}

Automated Manual Transmission

Introduced in R2017a

\section*{Continuously Variable Transmission}

Push belt continuously variable transmission with independent radii control
Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Continuously Variable Transmission block implements a push belt continuously variable transmission (CVT) with independent radii control. Use the block for control system design, powertrain matching, and fuel economy studies. You can configure the block for internal or external control:
- Internal - Input direction and pulley ratio requests
- External - Input direction and pulley displacement requests

The table summarizes the pulley kinematic, speed reduction, and dynamic calculations made by the Continuously Variable Transmission block.
\begin{tabular}{|l|c|c|c|}
\hline Calculation & Pulley Kinematics & \begin{tabular}{c} 
Reverse and Final \\
Speed Reduction
\end{tabular} & Dynamics \\
\hline Final angular speed ratio & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \begin{tabular}{l} 
Belt torque applied to the \\
secondary and primary pulleys
\end{tabular} & & & \(\checkmark\) \\
\hline \begin{tabular}{l} 
Torque applied to the secondary \\
and primary pulleys
\end{tabular} & & \(\checkmark\) & \\
\hline \begin{tabular}{l} 
Angular velocity of secondary \\
and primary pulleys
\end{tabular} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Belt and pulley geometry & \(\checkmark\) & & \\
\hline Belt linear speed & & & \\
\hline \begin{tabular}{l} 
Wrap angle on secondary and \\
primary pulley
\end{tabular} & \(\checkmark\) & & \\
\hline \begin{tabular}{l} 
Primary and secondary pulley \\
radii
\end{tabular} & \(\checkmark\) & & \\
\hline
\end{tabular}

The figure shows the CVT variator with two configurations. In the first configuration, which illustrates speed reduction, the variator is set to decrease the primary pulley radius and increase the secondary pulley radius. In the second configuration, which illustrates overdrive, the variator is set to increase the primary pulley radius and decrease the secondary pulley radius.


\section*{Pulley Kinematics}

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.

\[
\begin{aligned}
& C_{d i s t}=r p_{\text {max }}+r_{\text {gap }}+r_{\text {sec_max }} \\
& L_{0}=f\left(r p_{\text {max }}, r s_{\text {max }}, r p_{\text {min }}, r s_{\text {min }}, C_{\text {dist }}\right) \\
& \text { ratio }_{\text {command }}=f\left(\text { ratio }_{\text {request }}, \text { ratio }_{\text {max }}, \text { ratio }_{\text {min }}\right) \\
& r_{\text {pri }}=f\left(r_{0}, \text { ratio }_{\text {command }}, C_{\text {dist }}\right) \\
& r_{\text {sec }}=f\left(r_{0}, \text { ratio }_{\text {command }} C_{\text {dist }}\right) \\
& x_{\text {pri }}=f\left(r_{0}, r_{\text {pri }}, \theta_{\text {wedge }}\right) \\
& x_{\text {sec }}=f\left(r_{0}, r_{\text {sec }}, \theta_{\text {wedge }}\right)
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll} 
ratio \(_{\text {request }}\) & Pulley gear ratio request \\
ratio \(_{\text {command }}\) & Pulley gear ratio command, based on request and physical limitations \\
\(r_{g a p}\) & Gap distance between variator pulleys \\
\(C_{d i s t}\) & Distance between variator pulley centers \\
\(r p_{\max }\) & Maximum variator primary pulley radius \\
\(r s_{\max }\) & Maximum variator secondary pulley radius \\
\(r p_{\min }\) & Minimum variator primary pulley radius \\
\(r s_{\min }\) & Minimum variator secondary pulley radius \\
\(r_{o}\) & Initial pulley radii with gear ratio of 1 \\
\(L_{o}\) & Initial belt length, resulting from variator specification \\
\(x_{p r i}\) & Variator primary pulley displacement, resulting from controller request \\
\(x_{s e c}\) & Variator secondary pulley displacement, resulting from controller request \\
\(r_{p r i}\) & Variator primary pulley radius, resulting from controller request \\
\(r_{s e c}\) & Variator secondary pulley radius, resulting from controller request \\
\(\Theta_{w e d g e}\) & Variator wedge angle \\
\(\Phi\) & Angle of belt to pulley contact point \\
\(L\) & Belt length, resulting from variator position
\end{tabular}

\section*{Reverse and Final Speed Reduction}

The CVT input shaft connects to a planetary gear set that drives the primary pulley. The shift direction determines the input gear inertia, efficiency, and gear ratio. The shift direction is the filtered commanded direction:
\[
\frac{\text { Dir }_{\text {shift }}}{\operatorname{Dir}}(s)=\frac{1}{\tau_{s} s+1}
\]

For forward motion ( Dir \(_{\text {shift }}=1\) ):
\[
\begin{aligned}
& N_{i}=1 \\
& \eta_{i}=\eta_{f w d} \\
& J_{i}=J_{f w d}
\end{aligned}
\]

For reverse motion \(\left(\right.\) Dir \(\left._{\text {shift }}=-1\right)\) :
\[
\begin{aligned}
& N_{i}=-N_{r e v} \\
& \eta_{i}=\eta_{r e v} \\
& J_{i}=J_{r e v}
\end{aligned}
\]

The gear ratio and efficiency determine the input drive shaft speed and torque applied to the primary pulley:
\[
T_{a p p \_p r i}=\eta_{i} N_{i} T_{i}
\]

The block reduces the secondary pulley speed and applied torque using a fixed gear ratio.
\[
\begin{aligned}
& T_{a p p_{-} s e c}=\frac{T_{o}}{\eta_{o} N_{O}} \\
& \omega_{o}=\frac{\omega_{\text {sec }}}{N_{O}}
\end{aligned}
\]

The final gear ratio, without slip, is given by:
\[
N_{\text {final }}=\frac{\omega_{i}}{\omega_{o}}=N_{i} N_{o} \frac{r_{\text {sec }}}{r_{p r i}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(N_{i}\) & Input planetary gear ratio \\
Dir & CVT direction command \\
\(D_{i r}\) & Direction used to determine planetary inertia, efficiency, and ratio \\
\(\tau_{s}\) & Direction shift time constant \\
\(\eta_{\text {fwd }}, \eta_{\text {rev }}\) & Forward and reverse gear efficiency, respectively \\
\(J_{\text {fwd }} J_{\text {rev }}\) & Forward and reverse gear inertia, respectively \\
\(N_{\text {rev }}\) & Reverse gear ratio \\
\(T_{\text {app_pri, }} T_{\text {app_sec }}\) & Torque applied to primary and secondary pulleys, respectively \\
\(T_{i}\) & Input drive shaft torque \\
\(\omega_{i,} \omega_{o}\) & Input and output drive shaft speed, respectively \\
\(\omega_{\text {pri, }} \omega_{\text {sec }}\) & Primary and secondary pulley speed, respectively \\
\(N_{\text {final }}\) & Total no-slip gear ratio
\end{tabular}

\section*{Dynamics}

The maximum torque that the CVT can transmit depends on the friction between the pulleys and belt. According to Prediction of Friction Drive Limit of Metal V-Belt, the torque friction is defined as:
\[
T_{\text {fric }}\left(r_{p}, \mu\right)=\frac{2 \mu F_{a x} r_{p}}{\cos \left(\vartheta_{\text {wedge }}\right)}
\]

Without macro slip, the tangential acceleration of the pulley is assumed to be equal to the belt acceleration. Once the torque reaches the static friction limit, the belt begins to slip, and the pulley and belt acceleration are independent. During slip, the torque transmitted by the belt is a function of the kinetic friction factor. During the transition from slip to non-slip conditions, the belt and tangential pulley velocities are equal.

The block implements these equations for four different slip conditions.
\begin{tabular}{|c|c|}
\hline Condition & Equations \\
\hline Belt slips on both secondary and primary pulleys & \[
\begin{aligned}
& \left(J_{\text {pri }}+J_{i}\right) \dot{\omega}_{\text {pri }}=T_{\text {app_pri }}-T_{\text {BoP_pri }}-b_{\text {pri }} \omega_{\text {pri }} \\
& J_{\text {sec }} \dot{\omega}_{\text {sec }}=T_{\text {app_sec }}-T_{\text {BoP_sec }}-b_{\text {sec }} \omega_{\text {sec }} \\
& m_{b} \dot{v}_{b}=\frac{T_{\text {BoP_pri }}}{r_{\text {pri }}}+\frac{T_{\text {BoP_sec }}}{r_{\text {sec }}}-b_{b} v_{b} \\
& r_{\text {pri }} \omega_{\text {pri }} \neq v_{b} \\
& r_{\text {sec }} \omega_{\text {sec }} \neq v_{b}
\end{aligned}
\] \\
\hline Belt slips on only the primary pulley & \[
\begin{aligned}
& \left(J_{p r i}+J_{i}\right) \dot{\omega}_{\text {pri }}=T_{\text {app_pri }}-T_{\text {BoP_pri }}-b_{\text {pri }} \omega_{\text {pri }} \\
& \left(m_{b}+\frac{J_{s e c}}{r_{s e c}^{2}}\right) \dot{v}_{b}=\frac{T_{\text {BoP_pri }}}{r_{\text {pri }}}+\frac{T_{\text {BoP_sec }}}{r_{s e c}}-\left(b_{b}+\frac{b_{s e c}}{r_{s e c}^{2}}\right) v_{b} \\
& \omega_{\text {sec }}=\frac{v_{b}}{r_{\text {sec }}} \\
& r_{\text {pri }} \omega_{\text {pri }} \neq v_{b} \\
& T_{\text {BoP_pri }}=\operatorname{sgn}\left(r_{\text {pri }} \omega_{\text {pri }}-v_{b}\right) T_{\text {fric }}\left(r_{\text {pri }} \mu_{k i n}\right) \\
& \left|T_{\text {BoP_sec }}\right|<T_{\text {fric }}\left(r_{\text {sec }}, \mu_{s t a t i c}\right)
\end{aligned}
\] \\
\hline Belt slips on only the secondary pulley &  \\
\hline Belt does not slip & \[
\begin{aligned}
& \left(m_{b}+\frac{J_{s e c}}{r^{2}}+\frac{J_{\text {sec } i}+J_{i}}{r^{2}{ }_{p r i}}\right) \dot{v}_{b}=\frac{T_{a p p \_p r i}}{r_{\text {pri }}}+\frac{T_{a p p \_s e c}}{r_{\text {sec }}}-\left(\left.b_{b}+\frac{b_{s e c}}{r^{2}{ }_{\text {sec }}}+\frac{b_{\text {pri }}}{r^{2}} \right\rvert\,\right. \\
& \omega_{\text {pri }}=\frac{v_{b}}{r_{\text {pri }}} \\
& \omega_{\text {sec }}=\frac{v_{b}}{r_{\text {sec }}} \\
& \left|T_{\text {BoP_pri }}\right|<T_{\text {fric }}\left(r_{\text {pri }}, \mu_{\text {static }}\right) \\
& \left|T_{\text {BoP_sec }}\right|<T_{\text {fric }}\left(r_{\text {sec }}, \mu_{\text {static }}\right)
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Condition & Equations \\
\hline Slip direction & PriSlipDir \(=\left\{\begin{array}{cc|}0 & r_{\text {pri }} \omega_{p r i}=v_{b} \\
1 & r_{\text {pri }} \omega_{\text {pri }}>v_{b} \\
-1 & r_{\text {pri }} \omega_{p r i}<v_{b}\end{array}\right.\) \\
& SecSlipDir \(=\left\{\begin{array}{cl}0 & r_{\text {sec }} \omega_{\text {sec }}=v_{b} \\
1 & r_{\text {sec }} \omega_{\text {sec }}>v_{b} \\
-1 & r_{\text {sec }} \omega_{\text {sec }}<v_{b}\end{array}\right.\) \\
\hline
\end{tabular}

The equations use these variables.
\(T_{\text {BoP_prii }} T_{\text {BoP_sec }}\)
\(T_{\text {app_pri, }} T_{\text {app_sec }}\)
\(J_{\text {pri }} J_{\text {sec }}\)
\(b_{\text {prii }}, b_{\text {sec }}\)
\(F_{a x}\)
\(\mu\)
\(\mu_{\text {kin }}, \mu_{\text {static }}\)
\(v_{b}, a_{b}\)
\(m_{b}\)
\(r_{\text {pri, }}, r_{\text {sec }}\)
\(\Phi_{\text {wrap }}\)
\(\Phi_{\text {wrap_pri, }} \Phi_{\text {wrap_sec }}\)

Belt torque acting on the primary and secondary pulleys, respectively
Torque applied to primary and secondary pulleys, respectively
Primary and secondary pulley rotational inertias, respectively
Primary and secondary pulley rotational viscous damping, respectively
Pulley clamp force
Coefficient of friction
Coefficient of kinetic and static friction
Linear speed and acceleration of the belt, respectively
Total belt mass
Radii of the primary and secondary pulleys, respectively
Wrap angle of belt to pulley contact point
Primary and secondary pulley wrap angles, respectively

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline \multirow[t]{3}{*}{PwrIn fo} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrEng & Engine power & \(P_{\text {eng }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrDif frntl & Differential power & \(P_{\text {diff }}\) & \(\omega_{o} T_{o}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & \begin{tabular}{l}
PwrBlt \\
Loss
\end{tabular} & Belt slip power loss & \(P_{\text {bltloss }}\) & \[
\begin{aligned}
& \left(J_{i n}+J_{p r i}\right) \dot{\omega}_{\text {pri }} \omega_{\text {pri }}+ \\
& J_{s e c} \dot{\omega}_{\text {sec }} \omega_{\text {sec }}+ \\
& m_{b} \dot{v}_{b} v_{b}+b_{\text {pri }} \omega_{\text {pri }}^{2}+b_{\text {sec }} \omega_{\text {se }}^{2} \\
& T_{\text {app }}{ }_{p r i} \omega_{\text {pri }}-T_{a p p_{s e c}} \omega_{\text {sec }}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline \multirow[t]{3}{*}{} & PwrGea rInLos s & Input planetary gear mechanical power loss & \(P_{\text {grinloss }}\) & \(-\left|\omega_{i} T_{i}-T_{\text {app_pri }} \omega_{p r i}\right|\) \\
\hline & PwrGea rOutLo SS & Output gear reduction mechanical power loss & \begin{tabular}{l}
\[
P_{\text {groutlos }}
\] \\
s
\end{tabular} & \(-\left|\omega_{o} T_{o}-T_{a p p_{-} s e c} \omega_{\text {sec }}\right|\) \\
\hline & PwrDam pLoss & Mechanical damping loss & \begin{tabular}{l}
\[
P_{\text {damplos }}
\] \\
s
\end{tabular} & \[
\begin{aligned}
& -b_{p r i} \omega_{p r i}^{2}-b_{s e c} \omega_{s e c}^{2} \\
& -b_{b} v_{b}^{2}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrSto redTra ns & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & \[
\begin{aligned}
& \left(J_{i n}+J_{p r i}\right) \dot{\omega}_{\text {pri }} \omega_{\text {pri }} \\
& +J_{\text {sec }} \dot{\omega}_{\text {sec }} \omega_{\text {sec }}+m_{b} \dot{v}_{b} v_{b}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{|c|c|}
\hline \(T_{\text {app_pri, }} T_{\text {app_sec }}\) & Torque applied to primary and secondary pulleys, respectively \\
\hline \(T_{i}, T_{o}\) & Input and output drive shaft torque, respectively \\
\hline \(J_{\text {pri }} J_{\text {sec }}\) & Primary and secondary pulley rotational inertias, respectively \\
\hline \(b_{\text {pri, }}, b_{\text {sec }}\) & Primary and secondary pulley rotational viscous damping, respectively \\
\hline \(\omega_{\text {pri, }} \omega_{\text {sec }}\) & Primary and secondary pulley speed, respectively \\
\hline \(\omega_{i}, \omega_{o}\) & Input and output drive shaft speed, respectively \\
\hline \(v_{b}, a_{b}\) & Linear speed and acceleration of the belt, respectively \\
\hline \(r_{\text {pri }} r_{\text {sec }}\) & Radii of the primary and secondary pulleys, respectively \\
\hline
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{Dir - Direction request}
scalar
Direction request, \(D i r_{r e q}\), controlling the direction. The block filters the request to determine the direction, forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{cc}
1 & \text { when } \text { Dir }_{r e q} \geq 0 \\
-1 & \text { when Di } r_{r e q}<0
\end{array}\right.
\]

\section*{PllyRatioReq - Pulley ratio request \\ scalar}

CVT pulley ratio request, ratio \(_{\text {request }}\).

\section*{Dependencies}

To create this port, for the Control mode parameter, select Ideal integrated controller.

\section*{PriDisp - Primary pulley displacement}
scalar
Variator primary pulley displacement, \(\chi_{\text {pri }}\) in \(m\).

\section*{Dependencies}

To create this port, for the Control mode parameter, select External control.

\section*{SecDisp - Secondary pulley displacement \\ scalar}

Variator secondary pulley displacement, \(x_{\text {sec }}\), in m.

\section*{Dependencies}

To create this port, for the Control mode parameter, select External control.

\section*{EngTrq - Input drive shaft torque}
scalar
External torque applied to the input drive shaft, \(T_{i}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Output drive shaft torque}
scalar
External torque applied to the output drive shaft, \(T_{o}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline EngTrq & Input shaft torque & \(T_{i}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline DiffTrq & Output shaft torque & \(T_{o}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline EngSpd & Input shaft speed & \(\omega_{i}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline DiffSpd & Output shaft speed & \(\omega_{o}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline PriRadius & Primary pulley radius & \(r_{p r i}\) & m \\
\hline PriPhi & Primary pulley wrap angle & \(\Phi_{p r i}\) & rad \\
\hline SecRadius & Secondary pulley radius & \(r_{s e c}\) & m \\
\hline SecPhi & Secondary pulley wrap angle & \(\Phi_{\text {sec }}\) & rad \\
\hline BltLngthDelta & Change in belt length & \(\Delta L\) & m \\
\hline BltLngth & Belt length & \(L\) & m \\
\hline BltLngthInit & Initial belt length & \(L_{o}\) & m \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{BltOnPriTrq} & Belt torque acting on the primary pulley & \(T_{\text {BoP_pri }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multicolumn{3}{|l|}{BltOnSecTrq} & Belt torque acting on the secondary pulley & \(T_{\text {Bop_sec }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multicolumn{3}{|l|}{BltVel} & Linear speed of the belt & \(v_{b}\) & m/s \\
\hline \multicolumn{3}{|l|}{PriAngVel} & Primary pulley speed & \(\omega_{\text {pri }}\) & rad/s \\
\hline \multicolumn{3}{|l|}{SecAngVel} & Secondary pulley speed & \(\omega_{\text {sec }}\) & rad/s \\
\hline \multicolumn{3}{|l|}{PriSlipDir} & Primary pulley slip direction indicator & PriSlipDir & N/A \\
\hline \multicolumn{3}{|l|}{SecSlipDir} & Secondary pulley slip direction indicator & SecSlipDir & N/A \\
\hline \multicolumn{3}{|l|}{TransSpdRatio} & Total no-slip gear ratio & \(N_{\text {final }}\) & N/A \\
\hline \multirow[t]{7}{*}{PwrInfo} & PwrTrnsfrd & PwrEng & Engine power & \(P_{\text {eng }}\) & W \\
\hline & & \[
\begin{aligned}
& \text { PwrDiffrnt } \\
& \text { l }
\end{aligned}
\] & Differential power & \(P_{\text {diff }}\) & W \\
\hline & PwrNotTrns & PwrBltLoss & Belt slip power loss & \(P_{\text {bitloss }}\) & W \\
\hline & & PwrGearInL oss & Input planetary gear mechanical power loss & \(P_{\text {grinloss }}\) & W \\
\hline & & PwrGear0ut Loss & Output gear reduction mechanical power loss & \(P_{\text {groutloss }}\) & W \\
\hline & & PwrDampLos s & Mechanical damping loss & \(P_{\text {damploss }}\) & W \\
\hline & PwrStored & PwrStoredT rans & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{EngSpd - Input drive shaft speed}

\section*{scalar}

Input drive shaft angular speed, \(\omega_{\mathrm{i}}\), in rad/sec.

\section*{DiffSpd - Output drive shaft speed}
scalar
Output drive shaft angular speed, \(\omega_{0}\), in rad/sec.

\section*{Parameters}

\section*{Control mode - External or internal}

Ideal integrated controller (default)|External control
Specify the control method, either internal or external.

\section*{Dependencies}

This table summarizes the port and input model configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline Ideal integrated controller & PllyRatioReq \\
\hline External control & PriDisp \\
& SecDisp \\
\hline
\end{tabular}

\section*{Kinematics}

Maximum variator primary pulley radius, rp_max - Radius
. 08 (default) | scalar
Maximum variator primary pulley radius, \(r p_{\text {max }}\), in \(m\).

\section*{Maximum variator secondary pulley radius, rs_max - Radius}
. 07 (default) | scalar
Maximum variator secondary pulley radius, \(r s_{\text {max }}\), in \(m\).
Minimum variator primary pulley radius, rp_min - Radius . 03 (default) | scalar

Minimum variator primary pulley radius, \(r p_{\text {min }}\), in m .
Minimum variator secondary pulley radius, rs_min - Radius . 03 (default) | scalar

Minimum variator secondary pulley radius, \(r s_{\text {min }}\) in m .
Gap distance between variator pulleys, rgap - Specify crown wheel connection . 025 (default) | scalar

The gap between the secondary and primary pulleys, \(r_{\text {gap }}\), in \(m\). The figure shows the pulley geometry.
Primary
Pulley Secondary


Variator wedge angle, thetawedge - Specify crown wheel connection 11 (default) | scalar

Variator wedge angle, \(\Theta_{\text {wedge }}\), in deg.


\section*{Dynamics}

\section*{Primary pulley inertia, J_pri - Inertia}
0.1 (default) | scalar

Primary pulley inertia, \(J_{p r i}\), in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).

\section*{Secondary pulley inertia, J_sec - Inertia}
0.1 (default) | scalar

Secondary pulley inertia, \(J_{\text {sec }}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Primary pulley damping coefficient, b_pri - Damping
0.001 (default)| scalar

Primary pulley damping coefficient, \(b_{p r i}\), in \(N \cdot m \cdot s / r a d\).

\section*{Secondary pulley damping coefficient, b_sec - Damping}
0.001 (default)|scalar

Secondary pulley damping coefficient, \(b_{s e c}\), in \(N \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}\).
Belt damping coefficient, b_b - Damping
0.0025 (default) | scalar

Belt damping coefficient, \(b_{b}\), in kg/s.
Static friction coefficient, mu_static - Friction
0.3 (default) | scalar

Static friction coefficient between the belt and primary pulley, \(\mu_{\text {static }}\), dimensionless.
Kinetic friction coefficient, mu_kin - Friction
0.2 (default) | scalar

Kinetic friction coefficient between the belt and primary pulley, \(\mu_{\text {kin }}\), dimensionless.

Belt mass, m_b - Mass
3 (default) | scalar
Belt mass, \(m_{b}\), in kg .
Pulley clamp force, F_ax - Pulley clamp force 5000 (default) | scalar

Pulley clamp force, \(F_{a x}\), in \(N\).

\section*{Reverse and Output Ratio}

Forward inertia, J_fwd - Inertia
0.1 (default) | scalar

Forward inertia, \(J_{f w d}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Reverse inertia, J_rev - Inertia
0.1 (default) | scalar

Reverse inertia, \(J_{\text {rev, }}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Forward efficiency, eta_fwd - Efficiency
0.95 (default) | scalar

Forward efficiency, \(\eta_{f w d}\), dimensionless.
Reverse efficiency, eta_rev - Efficiency
0.95 (default) | scalar

Reverse efficiency, \(\eta_{\text {rev }}\), dimensionless.
Reverse gear ratio, N_rev - Ratio
2 (default) | scalar
Reverse gear ratio, \(N_{\text {rev }}\) dimensionless.
Shift time constant, tau_s - Constant
. 01 (default) | scalar
Shift time constant, \(\tau_{s}\), in s.
Output gear ratio, N_o - Ratio
2 (default) | scalar
Output gear ratio, \(N_{o}\), dimensionless.
Output gear efficiency, eta_o - Efficiency
0.98 (default) | scalar

Output gear efficiency, \(\eta_{o}\), dimensionless.

\section*{References}
[1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.
[2] Bonsen, B. Efficiency optimization of the push-belt CVT by variator slip control. Ph.D. Thesis. Eindhoven University of Technology, 2006.
[3] CVT How Does It Work. CVT New Zealand 2010 Ltd, 10 Feb. 2011. Web. 25 Apr. 2016.
[4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.
[5] Sakagami, K. Prediction of Friction Drive Limit of Metal V-Belt. Warrendale, PA: SAE International Journal of Engines 8(3):1408-1416, 2015.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

CVT Controller

Introduced in R2017a

\section*{CVT Controller}

Continuously variable transmission controller

\section*{Library: \\ Powertrain Blockset / Transmission / Transmission Controllers}


\section*{Description}

The CVT Controller block implements a push belt continuously variable transmission (CVT) controller. The block uses standard pulley and geometric equations to calculate the kinematic setpoints for the CVT variator. You can use the block to control a CVT.

\section*{Pulley Kinematics}

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.

\[
\begin{aligned}
& C_{\text {dist }}=r p_{\text {max }}+r_{\text {gap }}+r_{\text {sec_max }} \\
& L_{0}=f\left(r p_{\text {max }}, r s_{\text {max }}, r p_{\text {min }}, r s_{\text {min }}, C_{\text {dist }}\right) \\
& \text { ratio }_{\text {command }}=f\left(\text { ratio }_{\text {request }}, \text { ratio }_{\text {max }}, \text { ratio }_{\text {min }}\right) \\
& r_{\text {pri }}=f\left(r_{0}, \text { ratio }_{\text {command }}, C_{\text {dist }}\right) \\
& r_{\text {sec }}=f\left(r_{0}, \text { ratio }_{\text {command }}, C_{\text {dist }}\right) \\
& x_{\text {pri }}=f\left(r_{0}, r_{\text {pri }}, \theta_{\text {wedge }}\right) \\
& \chi_{\text {sec }}=f\left(r_{0}, r_{\text {sec }}, \theta_{\text {wedge }}\right)
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll} 
ratio \(_{\text {request }}\) & Pulley gear ratio request \\
ratio \(_{\text {command }}\) & Pulley gear ratio command, based on request and physical limitations \\
\(r_{\text {gap }}\) & Gap distance between variator pulleys \\
\(C_{\text {dist }}\) & Distance between variator pulley centers \\
\(r p_{\text {max }}\) & Maximum variator primary pulley radius \\
\(r s_{\text {max }}\) & Maximum variator secondary pulley radius \\
\(r p_{\text {min }}\) & Minimum variator primary pulley radius \\
\(r s_{\text {min }}\) & Minimum variator secondary pulley radius \\
\(r_{o}\) & Initial pulley radii with gear ratio of 1 \\
\(L_{o}\) & Initial belt length, resulting from variator specification \\
\(\chi_{\text {pri }}\) & Variator primary pulley displacement, resulting from controller request \\
\(\chi_{\text {sec }}\) & Variator secondary pulley displacement, resulting from controller request \\
\(r_{\text {pri }}\) & Variator primary pulley radius, resulting from controller request \\
\(r_{\text {sec }}\) & Variator secondary pulley radius, resulting from controller request \\
\(\Theta_{\text {wedge }}\) & Variator wedge angle \\
\(\Phi\) & Angle of belt to pulley contact point \\
\(L\) & Belt length, resulting from variator position
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{DirReq - Direction request}
scalar
Direction request, Dir \(_{\text {req }}\), controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals - 1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{cc}
1 & \text { when Dir } r_{r e q} \geq 0 \\
-1 & \text { when Dir } r_{r e q}<0
\end{array}\right.
\]

\section*{PllyRatioReq - Pulley ratio request \\ scalar}

CVT pulley ratio request, ratio \(_{\text {request }}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Variable & Units \\
\hline Radius & PriRadius & \begin{tabular}{l} 
Variator primary pulley \\
radius, resulting from \\
controller request
\end{tabular} & \(r_{\text {pri }}\) & m \\
\cline { 2 - 5 } & SecRadius & \begin{tabular}{l} 
Variator secondary pulley \\
radius, resulting from \\
controller request
\end{tabular} & \(r_{\text {sec }}\) & m \\
\cline { 2 - 5 } & InitPllyRadius & \begin{tabular}{l} 
Initial pulley radii with \\
gear ratio of 1
\end{tabular} & \(r_{o}\) & m \\
\hline RatioAdj & \begin{tabular}{l} 
Pulley gear ratio command, \\
based on request and \\
physical limitations
\end{tabular} & \({\text { ratio } \text { command }}^{\text {Maximum pulley ratio }}\) & ratio \(_{\text {max }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline RatioMax & Maxim \\
\hline RatioMin & Minimum pulley ratio & ratio \(_{\text {min }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline PriDispCmd & \begin{tabular}{l} 
Variator primary pulley \\
displacement, resulting \\
from controller request
\end{tabular} & \(x_{\text {pri }}\) & m \\
\hline SecDispCmd & \begin{tabular}{l} 
Variator secondary pulley \\
displacement, resulting \\
from controller request
\end{tabular} & \(x_{\text {sec }}\) & m \\
\hline
\end{tabular}

\section*{Dir - Direction request}

\section*{scalar}

Direction request, \(D i r_{r e q}\), controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals - 1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{cc}
1 & \text { when } \text { Dir }_{r e q} \geq 0 \\
-1 & \text { when } D i r_{r e q}<0
\end{array}\right.
\]

\section*{PriDispCmd - Primary pulley displacement}
scalar
Variator primary pulley displacement, \(\chi_{\text {pri, }}\) in \(m\).

\section*{SecDispCmd - Secondary pulley displacement \\ scalar}

Variator secondary pulley displacement, \(x_{\text {sec }}\), in \(m\).

\section*{Parameters}

\section*{Kinematics}

Maximum variator primary pulley radius, rp_max - Radius
. 08 (default) | scalar
Maximum variator primary pulley radius, \(r p_{\max }\), in \(m\).
Maximum variator secondary pulley radius, rs_max - Radius . 07 (default) | scalar

Maximum variator secondary pulley radius, \(r s_{\text {max }}\), in \(m\).
Minimum variator primary pulley radius, rp_min - Radius
. 03 (default) | scalar
Minimum variator primary pulley radius, \(r p_{\text {min }}\), in m .
Minimum variator secondary pulley radius, rs_min - Radius . 03 (default) | scalar

Minimum variator secondary pulley radius, \(r s_{\text {min }}\), in \(m\).
Gap distance between variator pulleys, rgap - Specify crown wheel connection . 025 (default) | scalar

The gap between the secondary and primary pulleys, \(r_{g a p}\) in \(m\). The figure shows the pulley geometry.


Variator wedge angle, thetawedge - Specify crown wheel connection
11 (default) | scalar
Variator wedge angle, \(\Theta_{\text {wedge }}\) in deg.


\section*{References}
[1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.
[2] Bonsen, B. Efficiency optimization of the push-belt CVT by variator slip control. Ph.D. Thesis. Eindhoven University of Technology, 2006.
[3] CVT How Does It Work. CVT New Zealand 2010 Ltd. February 10, 2011. Accessed April 25, 2016.
[4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Continuously Variable Transmission
Introduced in R2017a

\section*{Dual Clutch Transmission}

Dual clutch transmission that applies torque to the drive shaft
Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Dual Clutch Transmission block implements a dual clutch transmission (DCT). In a DCT, two clutches apply mechanical torque to the drive shaft. Odd gears engage one clutch, while even gears engage the secondary clutch. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable. You can provide external clutch signals or configure the block to generate idealized internal clutch signals. The block implements the transmission model with minimal parameterization or computational cost.

Use the block to model a simplified automated manual transmission (AMT) for:
- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Dual Clutch Transmission block calculates:
- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a function of \\
the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & \begin{tabular}{ll} 
Efficiency determined from a 4D lookup table that is a function of: \\
& - \\
& Gear \\
& Input torque \\
& - \\
& Input speed \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Clutch Control}

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select Control mode parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch
to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select Control mode parameter External control.

\section*{Clutch Lock-Up and Clutch Friction}

Based on the clutch lock-up condition, the block implements one of these friction models.
\begin{tabular}{|l|l|l|}
\hline If & \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & Friction Model \\
\hline\(\omega_{i} \neq N \omega_{d}\) & Unlocked & \(T_{f}=T_{k}\) \\
or \\
\(T_{S}<\left|T_{f}-N w_{i} b_{i}\right|\) & & \(T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(\frac{w_{i}}{N}-w_{d}\right)\right]\) \\
& & \(T_{s}=F_{c} R_{e f f} \mu_{s}\) \\
& & \(R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i} 3\right)}{3\left(R_{o}{ }^{2}-R_{i} 2\right)}\) \\
\hline \begin{tabular}{l}
\(\omega_{i}=N \omega_{t}\) \\
and \\
\(T_{S} \geq\left|T_{f}-N b_{i} \omega_{i}\right|\)
\end{tabular} & Locked & \(T_{f}=T_{s}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{t}\) & Output drive shaft speed \\
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(b_{i}\) & Viscous damping \\
\(F_{c}\) & Applied clutch force \\
\(N\) & Engaged gear \\
\(T_{f}\) & Frictional torque \\
\(T_{k}\) & Kinetic frictional torque \\
\(T_{s}\) & Static frictional torque \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius \\
\(\mu_{s}\) & Coefficient of static friction \\
\(\mu_{k}\) & Coefficient of kinetic friction
\end{tabular}

\section*{Locked Rotational Dynamics}

To model the rotational dynamics when the clutch is locked, the block implements these equations.
\[
\begin{aligned}
& \dot{\omega}_{d} J_{N}=\eta_{N} T_{d}-\frac{\omega_{i}}{N} b_{N}+N T_{i} \\
& \omega_{i}=N \omega_{d}
\end{aligned}
\]

The block determines the input torque, \(T_{i}\), through differentiation.
The equations use these variables.
\begin{tabular}{ll}
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.
\[
\dot{\omega}_{d} J_{N}=N T_{f}-\omega_{d} b_{N}+T_{d}
\]
where:
\begin{tabular}{ll}
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline \multirow[t]{4}{*}{PwrIn fo} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrEng & Engine power & \(P_{\text {eng }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrDif frntl & Differential power & \(P_{\text {diff }}\) & \(\omega_{d} T_{d}\) \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input
\end{tabular}} & PwrEff Loss & Mechanical power loss & \(P_{\text {effloss }}\) & \(\omega_{d} T_{d}\left(\eta_{N}-1\right)\) \\
\hline & & PwrDam pLoss & Mechanical damping loss & \[
\begin{array}{|l}
\hline P_{\text {dampl }} \\
\text { oss }
\end{array}
\] & \(-b_{N} \omega_{d}^{2}-b_{i n} \omega_{i}^{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline - Negative signals indicate a loss & PwrClt chLoss & Clutch power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When locked: 0 \\
When unlocked:
\[
-T_{k}\left(\omega_{i}-N \omega_{d}\right)
\]
\end{tabular} \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrSto redTra ns & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & \begin{tabular}{l}
When locked:
\[
\dot{\omega}_{i} \omega_{i}\left(J_{i n}+\frac{J_{N}}{N^{2}}\right)
\] \\
When unlocked:
\[
J_{i n} \dot{\omega}_{i} \omega_{i}+J_{N} \dot{\omega}_{d} \omega_{d}
\]
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear rotational inertia \\
\(J_{i n}\) & Flywheel rotational inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(N\) & Engaged gear ratio \\
\(T_{i}\) & \begin{tabular}{l} 
Applied input torque, typically from the engine crankshaft or dual mass flywheel \\
damper
\end{tabular} \\
\(T_{d}\) & Applied load torque, typically from the differential or drive shaft \\
\(\omega_{d}\) & Initial input drive shaft rotational velocity \\
\(\omega_{i,}, \omega_{i}\) & Applied drive shaft angular speed and acceleration
\end{tabular}

\section*{Ports}

\section*{Inputs}

Gear - Gear number to engage
scalar
Integer value of gear number to engage.

\section*{CltchACmd - Command for odd-numbered gears \\ scalar}

Clutch pressure command for odd-numbered gears, between 0 and 1.

\section*{Dependencies}

To create this port, select Control mode parameter External control.

\section*{CltchBCmd - Command for even-numbered gears}
scalar
Clutch pressure command for even-numbered gears, between 0 and 1.

\section*{Dependencies}

To create this port, select Control mode parameter External control.

\section*{EngTrq - Applied torque \\ scalar}

Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied torque}
scalar
Applied load torque, \(T_{d}\), typically from the drive shaft, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature}

\section*{scalar}

Oil temperature, in K . To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description & Variable & Units \\
\hline \multirow[t]{2}{*}{Eng} & EngTrq & Applied input torque, typically from the engine crankshaft or dual mass flywheel damper & \(T_{i}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & EngSpd & Applied drive shaft angular speed input & \(\omega_{i}\) & rad/s \\
\hline \multirow[t]{2}{*}{Diff} & DiffTrq & Applied load torque, typically from the differential & \(T_{d}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & DiffSpd & Drive shaft angular speed output & \(\omega_{d}\) & rad/s \\
\hline \multirow[t]{2}{*}{Cltch} & CltchForce & Applied clutch force & \(F_{c}\) & N \\
\hline & CltchLocked & Clutch state & NA & NA \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Signal } & Description & Variable & Units \\
\hline Trans & TransSpd Ratio & \begin{tabular}{l} 
Input to output speed ratio \\
at time t
\end{tabular} & \(\Phi(t)\) & NA \\
\cline { 2 - 5 } & TransEta & \begin{tabular}{l} 
Ratio of output power to \\
input power
\end{tabular} & \(\eta_{N}\) & NA \\
\cline { 2 - 6 } & TransGearCmd & Commanded gear & \(N_{\text {cmd }}\) & NA \\
\cline { 2 - 5 } & TransGear & PwrTrnsfrd & \begin{tabular}{l} 
PwrEn \\
g
\end{tabular} & Engine power & \(N\)
\end{tabular}

\section*{EngSpd - Angular speed \\ scalar}

Drive shaft angular speed, \(\omega_{d}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed, \(\omega_{d}\), in rad/s.

\section*{Parameters}

\section*{Control mode - Specify control mode}

\section*{External control (default)|Ideal integrated controller}

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select Control mode parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select Control mode parameter External control.

\section*{Dependencies}

This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline \multirow{2}{*}{ External control } & CltchACmd \\
\cline { 2 - 2 } & CltchBCmd \\
\hline
\end{tabular}

\section*{Efficiency factors - Specify efficiency calculation}

Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a function of \\
the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a function of: \\
\end{tabular} \\
& • \\
& • \\
& • Input torque \\
& • Input speed \\
& Oil temperature \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency torque breakpoints, Trq_bpts \\
\\
\end{tabular} \\
& Efficiency speed breakpoints, omega_bpts \\
Efficiency temperature breakpoints, Temp_bpts \\
Efficiency lookup table, eta_tbl
\end{tabular}

\section*{Transmission}

Input shaft inertia, Jin - Inertia
0.1 (default) | scalar

Input shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
```

Input shaft damping, bin - Damping

```
0.001 (default) | scalar

Input shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Initial input velocity, omegain_o - Angular velocity
0 (default) | scalar
Angular velocity, in rad/s.

\section*{Efficiency torque breakpoints, Trq_bpts - Breakpoints} [25 5075100150200 250] (default)|vector

Torque breakpoints for efficiency table, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints
[52.4 78.5 105131157183209262314419 524] (default)|vector
Speed breakpoints for efficiency table, in rad/s.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Efficiency temperature breakpoints, Temp_bpts - Breakpoints}
[313 358] (default) | vector
Temperature breakpoints for efficiency table, in K.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear number vector, \(\mathbf{G}\) - Specify number of transmission speeds
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8] (default) |vector
Vector of integers used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G to \\
\hline \begin{tabular}{l} 
Four transmission speeds, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline \begin{tabular}{l} 
Three transmission speeds, including \\
neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, including \\
neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Gear ratio vector, \(\mathbf{N}\) - Ratio of input speed to output speed
[-4.70, 4.70, 4.700, 3.130,2.100, 1.670,1.290, 1.000,0.840, 0.670] (default)| vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Gear Ratios for & Set Gear number, G to & Set Gear ratio, N to \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline To Specify Gear Ratios for & Set Gear number, G to & Set Gear ratio, N to \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([-4.47,1,4.47,2.47,1.47,1,0.8]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Transmission inertia vector, Jout - Gear rotational inertia
[0.08 0.08 0.08 0.04 0.02 0.01 0.01 0.01 0.01 0.01] (default) |vector
Vector of gear rotational inertias, with indices corresponding to the inertias specified in Gear number, \(\mathbf{G}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia for & Set Gear number, G to & Set Inertia, \(\mathbf{J}\) to \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & {\([0.01,2.28,2.04,0.32,0.028]\)} \\
\hline Inertia for five gears, including & {\([-1,0,1,2,3,4,5]\)} & {\([2.28,0.01,2.28,2.04,0.32,0.028\)} \\
reverse and neutral & & \(0.01]\) \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Damping vector, bout - Gear viscous damping coefficient}
[.003 . 001 . 003 . 0025 . 002 . 001 . 001 . 001 . 001 . 001] (default) |vector
Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in Gear number, G, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping for & Set Gear number, G to & Set Damping, b to \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003,0.0025\),} \\
\(0.002,0.001]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Five gears, including reverse \\
and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001,0.003,0.0025\),} \\
\(0.002,0.001,0.001]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Efficiency vector, eta - Gear efficiency}
[0.930, 0.930, 0.930, 0.940,0.947, 0.948,0.946, 0.943,0.940, 0.935] (default)| vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency for & Set Gear number, G to & Set Efficiency, eta to \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline Five gears, including reverse & {\([-1,0,1,2,3,4,5]\)} & {\([0.9,0.9,0.9\),} \\
and neutral & & \(0.9,0.9,0.95,0.95]\) \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.

\section*{Efficiency lookup table, eta_tbl - Gear efficiency array}

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Initial output velocity, omegaout_o - Transmission
0 (default) | scalar
Transmission initial output rotational velocity, \(\omega_{\text {to }}\), in rad/s. If you select Clutch initially locked, the block ignores the Initial output velocity, omega_o parameter value.

Initial gear, G_o - Engaged gear
0 (default) | scalar
Initial gear to engage, \(G_{0}\).
Clutch and Synchronizer
Clutch pressure time constant, tauc - Time
. 02 (default) | scalar
Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Synchronization time, ts - Time}
. 2 (default) | scalar
Time required for gear selection and synchronization, \(t_{s}\), in \(s\).

\section*{Clutch time, tc - Time}
. 5 (default) | scalar
Time required to engage clutch, \(t_{c}\), in s.

\section*{Dependencies}

To create this parameter, select Control mode parameter Ideal integrated controller.

\section*{Effective clutch radius, R-Radius}
. 25 (default) | scalar
The effective radius, \(R_{\text {eff }}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{O}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{O}^{2}-R_{i}^{2}\right)}
\]

The equation uses these variables.
\(R_{o} \quad\) Annular disk outer radius
\(R_{i} \quad\) Annular disk inner radius
Clutch force gain, K_c - Force
5e4 (default) | scalar
Open loop lock-up clutch gain, \(K_{c}\), in N .
Clutch static friction coefficient, mus - Coefficient
0.3 (default) | scalar

Dimensionless clutch disc coefficient of static friction, \(\mu_{s}\).
Clutch kinematic friction coefficient, muk - Coefficient 0.25 (default)| scalar

Dimensionless clutch disc coefficient of kinetic friction, \(\mu_{k}\).

\section*{Clutch initially locked - Select to initially lock clutch}
off (default) | on
Selecting this parameter initially locks the clutch.

\section*{Dependencies}

To create this parameter, select Control mode parameter Ideal integrated controller.
Synchronizer initially locked - Select to initially lock synchronizer off (default) | on

Selecting this parameter initially locks the synchronizer.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

DCT Controller | Automated Manual Transmission

Introduced in R2017a

\section*{DCT Controller}

Dual clutch transmission controller

Library:

Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The DCT Controller block implements a dual clutch transmission (DCT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

\section*{Ports}

\section*{Inputs}

GearReq - Gear number to engage
scalar
Gear number request, \(G_{\text {req }}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearReq & Gear number request & \(G_{\text {req }}\) \\
\hline GearEngd & Nominal gear commanded by the controller & \(G_{o}\) \\
\hline GearEffct & Effective gear & NA \\
\hline CltchACmd & \begin{tabular}{l} 
Clutch pressure command for odd-numbered gears, \\
between 0 and 1
\end{tabular} & NA \\
\hline CltchBCmd & \begin{tabular}{l} 
Clutch pressure command for even-numbered gears, \\
between 0 and 1
\end{tabular} & NA \\
\hline
\end{tabular}

\section*{NomGear - Nominal gear for shifting}
scalar
Nominal gear for shifting. The Dual Clutch Transmission block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

\section*{CltchACmd - Command for odd-numbered gears scalar}

Clutch pressure command for odd-numbered gears, between 0 and 1.
CltchBCmd - Command for even-numbered gears
scalar
Clutch pressure command for even-numbered gears, between 0 and 1.

\section*{Parameters}

Initial gear, G_o - Engaged gear
0 (default) | scalar
Initial gear to engage, \(G_{0}\).
Clutch actuation time, tc - Time
. 1 (default) | scalar
Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .
Synchronizer time, ts - Time
. 01 (default) | scalar
Time required for gear selection and synchronization, \(t_{s}\), in s .
Sample period, dt - Time
- 1 (default) | scalar

Sample period, \(d t\), in s.
Clutch initially locked - Select to initially lock clutch
off (default) | on
Selecting this parameter initially locks the clutch.
Synchronizer initially locked - Select to initially lock synchronizer off (default) | on

Selecting this parameter initially locks the synchronizer.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Dual Clutch Transmission | AMT Controller
Introduced in R2017a

\section*{Ideal Fixed Gear Transmission}

Ideal fixed gear transmission without clutch or synchronization
Library:
Powertrain Blockset / Transmission / Transmission Systems
Vehicle Dynamics Blockset / Powertrain / Transmission


\section*{Description}

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a function of \\
the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & Efficiency determined from a 4D lookup table that is a function of: \\
& - \\
& Gear \\
& - \begin{tabular}{l} 
Input torque \\
\\
\\
\end{tabular} - Input speed \\
\hline
\end{tabular}

The block uses this equation to determine the transmission dynamics:
\[
\begin{aligned}
& \dot{\omega}_{i} \frac{J_{N}}{N^{2}}=\eta_{N}\left(\frac{T_{O}}{N}+T_{i}\right)-\frac{\omega_{i}}{N^{2}} b_{N} \\
& \omega_{i}=N \omega_{0}
\end{aligned}
\]

The block filters the gear command signal:
\[
\frac{G}{G_{c m d}}(s)=\frac{1}{\tau_{s} s+1}
\]

\section*{Neutral Gear}

When Initial gear number, G_o is equal to 0, the initial gear is neutral. The block uses these parameters to decouple the input flywheel from the downstream gearing.
- Initial input velocity, omega_o
- Initial neutral input velocity, omegainN_o

The block uses these equations for the neutral gear speed and flywheel.
\[
\begin{aligned}
& \dot{\omega}_{\text {neutral }} \frac{J_{N}}{N^{2}}=\eta_{N} \frac{T_{o}}{N}-\frac{\omega_{\text {neutral }}}{N^{2}} b_{N} \\
& \omega_{\text {neutral }}=N \omega_{o} \\
& \dot{\omega}_{1} J_{F}=\eta_{@ N=0} T_{i}-b_{@ N=0} \omega_{i} \\
& J_{F}=J_{@ N}=1-J_{@ N}=0
\end{aligned}
\]

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline \multirow[t]{5}{*}{PwrIn fo} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrEng & Engine power & \(P_{\text {eng }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrDif frntl & Differential power & \(P_{\text {diff }}\) & \(\omega_{o} T_{o}\) \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrEff Loss & Mechanical power loss & \(P_{\text {effloss }}\) & \(\omega_{o} T_{o}\left(\eta_{N}-1\right)\) \\
\hline & & PwrDam pLoss & Mechanical damping loss & \[
\begin{aligned}
& P_{\text {dampl }} \\
& \text { oss }
\end{aligned}
\] & \begin{tabular}{l}
For \(G=0: \quad-\frac{b_{N} \omega_{i}^{2}}{\left|N^{2}\right|}\) \\
For \(\mathrm{G} \neq 0:-b_{N} \omega_{i}^{2}-\frac{b_{N} \omega_{\text {neutral }}^{2}}{\left|N^{2}\right|}\)
\end{tabular} \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrSto redTra ns & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & \begin{tabular}{l}
For \(\mathrm{G}=0\) : \(\quad \frac{J_{N}}{N^{2}} \dot{\omega}_{i} \omega_{i}\) \\
For \(\mathrm{G} \neq 0: \quad J_{F} \dot{\omega}_{i} \omega_{i}+\frac{J_{N}}{N^{2}} \dot{\omega}_{\text {neutral }} \omega_{\text {neutr }}\)
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear rotational inertia \\
\(J_{F}\) & Flywheel rotational inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(G\) & Engaged gear number \\
\(G_{c m d}\) & Gear number to engage \\
\(N\) & Engaged gear ratio
\end{tabular}
\begin{tabular}{ll}
\(T_{i}\) & \begin{tabular}{l} 
Applied input torque, typically from the engine crankshaft or dual mass flywheel \\
damper
\end{tabular} \\
\(T_{o}\) & \begin{tabular}{l} 
Applied load torque, typically from the differential or drive shaft
\end{tabular} \\
\(\omega_{o}\) & Initial input drive shaft rotational velocity \\
\(\omega_{i,} \omega_{i}\) & Applied drive shaft angular speed and acceleration \\
\(\omega_{\text {No }}\) & Initial neutral gear input rotational velocity \\
\(\omega_{\text {neutral }}\) & Neutral gear drive shaft rotational velocity \\
\(\tau_{s}\) & Shift time constant
\end{tabular}

\section*{Ports}

\section*{Inputs}

Gear - Gear number to engage
scalar
Integer value of gear number to engage, \(G_{c m d}\).

\section*{EngTrq - Applied input torque}
scalar
Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied load torque}
scalar
Applied load torque, \(T_{o}\), typically from the differential, in \(\mathrm{N} \cdot \mathrm{m}\).
Temp - Oil temperature
scalar
Oil temperature, in K . To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To enable this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variabl & Units \\
\hline \multirow[t]{2}{*}{Eng} & \multicolumn{2}{|l|}{EngTrq} & Applied input torque, typically from the engine crankshaft or dual mass flywheel damper & \(T_{i}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{EngSpd} & Applied drive shaft angular speed input & \(\omega_{i}\) & rad/s \\
\hline \multirow[t]{2}{*}{Diff} & \multicolumn{2}{|l|}{DiffTrq} & Applied load torque, typically from the differential & \(T_{o}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{DiffSpd} & Drive shaft angular speed output & \(\omega_{0}\) & rad/s \\
\hline \multirow[t]{4}{*}{Trans} & \multicolumn{2}{|l|}{TransSpdRatio} & Input to output speed ratio at time t & \(\Phi(t)\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransEta} & Ratio of output power to input power & \(\eta_{N}\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransGearCmd} & Commanded gear & \(N_{\text {cmd }}\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransGear} & Engaged gear & \(N\) & N/A \\
\hline \multirow[t]{5}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrEng & Engine power & \(P_{\text {eng }}\) & W \\
\hline & & PwrDiffrntl & Differential power & \(P_{\text {diff }}\) & W \\
\hline & \multirow[t]{2}{*}{PwrNotTrnsfrd} & PwrEffLoss & Mechanical power loss & \(P_{\text {effloss }}\) & W \\
\hline & & PwrDampLoss & Mechanical damping loss & \(P_{\text {damploss }}\) & W \\
\hline & PwrStored & PwrStoredTrans & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{EngSpd - Angular speed}
scalar
Applied drive shaft angular speed input, \(\omega_{i}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed output, \(\omega_{o}\), in rad/s.

\section*{Parameters}

\section*{Efficiency factors - Specify efficiency calculation}

Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a function of \\
the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & \begin{tabular}{ll} 
Efficiency determined from a 4D lookup table that is a function of: \\
& - \\
& Gear \\
& Input torque \\
& - \\
- Input speed \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, input \\
speed, and temperature
\end{tabular} & Efficiency torque breakpoints, Trq_bpts \\
& Efficiency speed breakpoints, omega_bpts \\
& Efficiency temperature breakpoints, Temp_bpts \\
& Efficiency lookup table, eta_tbl \\
\hline
\end{tabular}

\section*{Gear property interpolation method - Interpolation}

Nearest (default)|Linear|Flat|Cubic spline
Method that the block uses to switch the gear ratio during gear shifting.

\section*{Transmission}

Gear number vector, G - Specify number of transmission speeds
[-1,0,1,2,3,4,5] (default)| vector
Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G To \\
\hline \begin{tabular}{l} 
Four transmission speeds, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline \begin{tabular}{l} 
Three transmission speeds, including \\
neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, including \\
neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Efficiency torque breakpoints, Trq_bpts - Breakpoints
[25,50, 75, 100, 150, 200, 250] (default) | vector
Torque breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints
[52.4 78.5 105 \(131157183209262 \overline{314} 419\) 524] (default)|vector
Speed breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints
[313 358] (default)|vector
Temperature breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear ratio vector, \(\mathbf{N}\) - Ratio of input speed to output speed
[-4.47,4.47,4.47,2.47,1.47,1, 0.8] (default) | vector
Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Gear Ratios For & Set Gear number, G To & Set Gear ratio, N To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([-4.47,1,4.47,2.47,1.47,1,0.8]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Inertia vector, Jout - Gear rotational inertia
[0.128 0.01 0.128 0.1 0.062 0.028 0.01] (default)|vector
Vector of gear rotational inertias, \(J_{N}\), with indices corresponding to the inertias specified in Gear number, \(\mathbf{G}\), in \(\mathrm{kg}^{*} \mathrm{~m} \wedge 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia For & Set Gear number, G To & Set Inertia, J To \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & {\([0.01,2.28,2.04,0.32,0.028]\)} \\
\hline \begin{tabular}{ll} 
Inertia for five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([2.28,0.01,2.28\),} \\
\(2.04,0.32,0.028,0.01]\) \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Damping vector, bout - Gear viscous damping coefficient
[.003 .001 .003 .0025 .002 .001 .001] (default)|vector
Vector of gear viscous damping coefficients, \(b_{N}\), with indices corresponding to the coefficients specified in Gear number, \(\mathbf{G}\), in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping For & Set Gear number, G To & Set Damping, b To \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003\),} \\
\(0.0025,0.002,0.001]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Five gears, including reverse \\
and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001,0.003,0.0025\),} \\
\(0.002,0.001,0.001]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Efficiency vector, eta - Gear efficiency}
[0.9,0.9,0.9,0.9,0.9,0.95,0.95] (default) | vector
Vector of gear mechanical efficiency, \(\eta_{N}\), with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency For & Set Gear number, G To & Set Efficiency, eta To \\
\hline Four gears, including neutral & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline Five gears, including reverse & {\([-1,0,1,2,3,4,5]\)} & {\([0.9,0.9,0.9\),} \\
and neutral & & \(0.9,0.9,0.95,0.95]\) \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.
Efficiency lookup table, eta_tbl - Gear efficiency array

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Initial gear number, G_o - Gear
0 (default) | scalar
Initial gear number, \(G_{o}\), dimensionless.
Initial output velocity, omega_o - Output speed
0 (default) | scalar
Transmission initial output rotational velocity, \(\omega_{0}\), in rad/s.
Initial neutral input velocity, omegainN_o - Neutral gear input speed
0 (default) | scalar
Initial neutral gear input rotational velocity, \(\omega_{N o}\), in rad/s.
Shift time constant, tau_s - Time
. 01 (default) | scalar
Shift time constant, \(\tau_{s}\), in s .

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Automated Manual Transmission | Dual Clutch Transmission | Continuously Variable Transmission

Introduced in R2017a

\section*{Torque Converter}

Three-part torque converter consisting of an impeller, turbine, and stator
Library: Powertrain Blockset / Transmission / Torque Converters


\section*{Description}

The Torque Converter block implements a three-part torque converter consisting of an impeller, turbine, and stator with an optional clutch lock-up capability. The block can simulate driving (power flowing from impeller to turbine) and coasting (power from turbine dissipated in torque converter hydraulic fluid).

You can specify torque converter characteristics:
- Speed ratio - Ratio of turbine angular speed to impeller angular speed
- Torque ratio - Ratio of turbine torque to impeller torque
- Capacity factor parameterization - Function of input speed or input torque

Optional clutch lock-up configurations include:
- No lock-up - Model fluid-coupling only
- Lock-up - Model automatic clutch engagement
- External lock-up - Model clutch pressure as input from an external signal


\section*{Dynamics}

\section*{Clutch Lock-Up Condition and Clutch Friction}

Based on the clutch lock-up condition, the block implements these friction models.
\begin{tabular}{|l|l|l|}
\hline If & \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & Friction Model \\
\hline\(\omega_{i} \neq \omega_{t}\) & Unlocked & \(T_{f}=T_{k}\) \\
or \\
\(T_{S}<\left|\frac{J_{t}}{\left(J_{i}+J_{t}\right)}\left[T_{i}+T_{f}-\omega_{i}\left(b_{t}+b_{j}\right)\right]\right|\) & \begin{tabular}{l}
\(T_{k}=F_{c} R_{e f f} m_{k} \tanh \left[4\left(\omega_{i}-\omega_{t}\right)\right]\) \\
\(T_{s}=F_{c} R_{e f f} m_{s}\) \\
\(R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{3\left(R_{0} 2-R_{i} 2\right)}\)
\end{tabular} \\
\hline \begin{tabular}{l}
\(\omega_{i}=\omega_{t}\) \\
and \\
\(T_{S} \geq\left|\frac{J_{t}}{\left(J_{i}+J_{t}\right)}\left[T_{i}+T_{f}-w_{t}\left(b_{t}+b_{j}\right)+w_{t} b_{t}\right]\right|\)
\end{tabular} & \(T_{f}=T_{s}\) \\
\hline
\end{tabular}

\section*{Locked Rotational Dynamics}

To model the rotational dynamics if the clutch is locked, the block implements equations.
\[
\begin{aligned}
& \dot{\omega}\left(J_{i}+J_{t}\right)=T_{i}-\omega\left(b_{i}+b_{t}\right)+T_{e x t} \\
& \omega=\omega_{i}=\omega_{t}
\end{aligned}
\]

The rotational velocity represents both the impeller and turbine rotational velocities.

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics if the clutch is unlocked, the block implements equations.
\[
\begin{aligned}
& \dot{\omega}_{i} J_{i}=\mathrm{T}_{i}-\omega_{i} b_{i}-T_{f}-T_{p} \\
& \dot{\omega}_{t} J_{t}=\mathrm{T}_{\text {ext }}-\omega_{t} b_{t}+T_{f}+T_{t} \\
& T_{p}=\omega_{i}{ }^{2} \psi(\phi) \\
& T_{t}=T_{p} \zeta(\phi)
\end{aligned}
\]

To approximate the torque multiplication lag between the impeller and turbine, you can specify the parameter Fluid torque response time constant (set to 0 to disable), tauc [s].

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variable & Equations \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PwrIn \\
fo
\end{tabular}} & PwrTrnsfrd - Power transferred between blocks & PwrImp & Applied impeller power & \(P_{\text {imp }}\) & \(\omega_{i} T_{i}\) \\
\hline & \begin{tabular}{l}
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrTur b & Applied turbine output power & \(P_{\text {turb }}\) & \(\omega_{t} T_{t}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Variable & Equations \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrDam pLoss & Mechanical damping loss & \(P_{\text {damploss }}\) & \(-b_{t} \omega_{t}^{2}-b_{i} \omega_{i}^{2}\) \\
\hline & PwrFlu idCpli ngLoss & Heat loss to transmission fluid & \(P_{\text {flloss }}\) & \(-\left(T_{p} \omega_{i}-T_{\text {hyd }} \omega_{t}\right)\) \\
\hline & PwrClt chLoss & Clutch slip power loss & \(P_{\text {cltloss }}\) & \(-T_{k}\left(\omega_{i}-\omega_{t}\right)\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & PwrSto redImp & Rate change in impeller rotational kinetic energy & \(P_{\text {strimp }}\) & \(\dot{\omega}_{i} \omega_{i} J_{i}\) \\
\hline & PwrSto redTur b & Rate change in turbine rotational kinetic energy & \(P_{\text {strturb }}\) & \(\dot{\omega}_{t} \omega_{t} J_{t}\) \\
\hline
\end{tabular}

The block implements equations that use these variables.
\begin{tabular}{ll}
\(T_{f}\) & Frictional torque \\
\(T_{k}\) & Kinetic frictional torque \\
\(T_{s}\) & Static frictional torque \\
\(T_{i}\) & Applied input torque \\
\(T_{p}\) & Impeller reaction torque \\
\(T_{e x t}\) & Externally applied turbine torque \\
\(\psi(\phi)\) & Torque conversion capacity factor \\
\(\zeta(\phi)\) & Torque ratio \\
\(\omega_{i}\) & Impeller rotational shaft speed \\
\(\omega_{t}\) & Turbine rotational shaft speed \\
\(J_{i}\) & Impeller rotational inertia \\
\(J_{t}\) & Turbine rotational inertia \\
\(b_{i}\) & Impeller rotational viscous damping \\
\(b_{t}\) & Turbine rotational viscous damping \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{ImpTrq - Applied impeller torque \\ scalar}

Applied input torque, typically from the engine crankshaft or dual mass flywheel, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{TurbTrq - Applied turbine torque \\ scalar}

Applied turbine torque, typically from the transmission, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Clutch Force - Applied clutch force scalar}

Applied clutch force, typically from a hydraulic actuator, in N.

\section*{Dependencies}

To create this port, select External lock-up input for the Lock-up clutch configuration parameter.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{2}{*}{Imp} & \multicolumn{2}{|l|}{ImpTrq} & Applied input torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{ImpSpd} & Impeller rotational shaft speed & rad/s \\
\hline \multirow[t]{2}{*}{Turb} & \multicolumn{2}{|l|}{TurbTrq} & Applied turbine torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{TurbSpd} & Turbine rotational shaft speed & rad/s \\
\hline \multirow[t]{2}{*}{Cltch} & \multicolumn{2}{|l|}{CltchForce} & Applied clutch force & N \\
\hline & \multicolumn{2}{|l|}{CltchLocked} & Clutch locked or unlocked state & N/A \\
\hline \multirow[t]{2}{*}{TrqConv} & \multicolumn{2}{|l|}{TrqConvSpdRatio} & Turbine to impeller speed ratio & N/A \\
\hline & \multicolumn{2}{|l|}{TrqConvEta} & Torque conversion efficiency & N/A \\
\hline \multirow[t]{7}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrImp & Applied impeller power & W \\
\hline & & PwrTurb & Applied turbine output power & W \\
\hline & \multirow[t]{3}{*}{PwrNotTrnsfr d} & PwrDampLoss & Mechanical damping loss & W \\
\hline & & PwrFluidCplingLoss & Heat loss to transmission fluid & W \\
\hline & & PwrCltchLoss & Clutch slip power loss & W \\
\hline & \multirow[t]{2}{*}{PwrStored} & PwrStoredImp & Rate change in impeller rotational kinetic energy & W \\
\hline & & PwrStoredTurb & Rate change in turbine rotational kinetic energy & W \\
\hline
\end{tabular}

\section*{ImpSpd - Impeller speed \\ scalar}

Impeller rotational shaft speed, \(\omega_{i}\), in rad/s.

\section*{TrbSpd - Turbine speed \\ scalar}

Turbine rotational shaft speed, \(\omega_{t}\), in rad/s.

\section*{Parameters}

\section*{Configuration}

Lock-up clutch configuration - Select lock-up clutch configuration
Lock-up (default)|No lock-up | External lock-up input
\begin{tabular}{|l|l|}
\hline To Model & Select \\
\hline Fluid-coupling only & No lock-up \\
\hline Automatic clutch engagement & Lock-up \\
\hline \begin{tabular}{l} 
Clutch pressure as input from an external \\
signal
\end{tabular} & External lock-up input \\
\hline
\end{tabular}

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Torque Converter}

Impeller shaft inertia, Ji - Inertia
```

. 1 (default) | scalar

```

Impeller shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Impeller shaft viscous damping, bi - Viscous damping coefficient . 001 (default) | scalar}

Impeller shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Turbine shaft inertia, Jt - Inertia
. 1 (default) | scalar
Turbine shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Turbine shaft viscous damping, bt - Viscous damping coefficient . 001 (default) | scalar

Turbine shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Initial impeller shaft velocity, omegai_o - Angular velocity 0 (default) | scalar

Initial impeller shaft velocity, in rad/s.
Initial turbine shaft velocity, omegat_o - Angular velocity 0 (default) | scalar

Initial turbine shaft velocity, in rad/s.

Speed ratio vector, phi - Ratio
[ 00.500 .600 .700 .800 .870 .920 .940 .960 .97 ] (default)|vector
Vector of turbine speed to impeller speed ratios. Breakpoints for the capacity and torque multiplication vectors.

Capacity factor parameterization - Select factor ratio type
Input speed / sqrt(input torque) (default)|Absorbed torque / input speed^2
\begin{tabular}{|l|l|}
\hline To Set Factor Ratio to & Select \\
\hline \begin{tabular}{l} 
Impeller angular velocity to square root \\
impeller torque
\end{tabular} & Input speed / sqrt (input torque) \\
\hline \begin{tabular}{l} 
Impeller absorbed torque to square of \\
impeller angular velocity
\end{tabular} & Absorbed torque / input speed^2 \\
\hline
\end{tabular}

Capacity vector, psi - Vector
\([12.293812 .858813 .145213 .628514 .616316 .267519 .3503122 .104629 .9986\)
50.00] (default) | vector
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Capacity factor parameterization \\
Setting
\end{tabular} & Capacity Vector Units \\
\hline Input speed / sqrt(input torque) & \((\mathrm{rad} / \mathrm{s}) /(\mathrm{N} \cdot \mathrm{m})^{\wedge} 0.5\) \\
\hline Absorbed torque / input speed^2 & \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})^{\wedge} 2\) \\
\hline
\end{tabular}

Torque ratio vector, zeta - Vector
[2. 23201.54621 .40581 .27461 .15281 .07321 .01920 .99830 .99830 .9983\(]\)
(default) | vector
Vector of turbine torque to impeller speed ratios.
Fluid torque response time constant (set to 0 to disable), tauTC - Time constant
```

.02 (default) | scalar

```

To account for the delay in torque calculations due to changing input torque, specify the fluid torque transfer time constant, in s.

\section*{Interpolation method - Select interpolation method}

Linear (default) | Flat | Nearest
Interpolates the torque ratio and capacity factor functions between the discrete relative velocity values.

\section*{Clutch}

\section*{Clutch force equivalent net radius, Reff - Effective radius}
. 3 (default) | scalar
The effective radius, \(R_{\text {eff }}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{0}{ }^{2}-R_{i}{ }^{2}\right)}
\]

The equation uses these variables.
\(R_{0} \quad\) Annular disk outer radius
\(R_{i} \quad\) Annular disk inner radius

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

Static friction coefficient, mus - Coefficient
1.2 (default) | scalar

Dimensionless clutch disc coefficient of static friction.

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

Kinetic friction coefficient, muk - Coefficient
1 (default) | scalar
Dimensionless clutch disc coefficient of kinetic friction.
To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Initially lock clutch - Select to initially lock clutch \\ off (default) | on}

\section*{Dependencies}

To enable this parameter, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

Lock-up speed ratio threshold, philu - Threshold
.85 (default) | scalar
Set speed ratio threshold that engages clutch lock-up.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

\section*{Minimum lock-up engagement speed, omegal - Angular velocity 900*pi/30 (default)| scalar}

Set the minimum impeller speed that engages clutch lock-up, in rad/s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.
Lock-up disengagement speed, omegau - Angular velocity 800*pi/30 (default) | scalar

Set the minimum impeller speed that disengages clutch lock-up, in rad/s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.
Lock-up clutch force gain, K_c - Gain
5000 (default) | scalar
Open loop clutch lock-up force gain, in N .
Dependencies
To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.
Lock-up clutch time constant, tauC - Time constant . 0500 (default) | scalar

Open loop clutch lock-up time constant, in s.
Dependencies
To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

CI Core Engine | SI Core Engine

Introduced in R2017a

Functions

\section*{mdf}

Access information contained in MDF-file

\section*{Syntax}
```

mdfObj = mdf(mdfFileName)

```

\section*{Description}

The mdf function creates an object for accessing a measurement data format (MDF) file. See "Measurement Data Format (MDF)" on page 8-4.
\(\operatorname{mdfObj}=\mathrm{mdf}(\mathrm{mdfFileName})\) identifies a measurement data format (MDF) file and returns an MDF-file object, which you can use to access information and data contained in the file. You can specify a full or partial path to the file.

\section*{Examples}

\section*{Create an MDF-File Object for a Specified MDF-File}

Create an MDF object for a given file, and view the object display.
```

mdf0bj = mdf([matlabroot,'/examples/vnt/data/Logging_MDF.mf4'])
mdfObj =
MDF with properties:
File Details
Name: 'Logging_MDF.mf4'
Path: 'C:\Program Files\MATLAB\R2021b\examples\vnt\data\Logging_MDF.mf4'
Author: ''
Department: ''
Project: ''
Subject: ''
Comment: ''
Version: '4.10'
DataSize: 1542223
InitialTimestamp: 2020-06-25 20:41:13.133000000
Creator Details
ProgramIdentifier: 'MDF4Lib'
Creator: [1\times1 struct]
File Contents
Attachment: [5\times1 struct]
ChannelNames: {62\times1 cell}
ChannelGroup: [1×62 struct]

```

\section*{Input Arguments}

\section*{mdfFileName - MDF-file name}
char vector \(\mid\) string
MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char|string

\section*{Output Arguments}
mdf0bj - MDF-file
MDF-file object
MDF-file, returned as an MDF-file object. The object provides access to the MDF-file information contained in the following properties.
\begin{tabular}{|l|l|}
\hline Property & Description \\
\hline Name & Name of the MDF-file, including extension \\
\hline Path & Full path to the MDF-file, including file name \\
\hline Author & Author who originated the MDF-file \\
\hline Department & Department that originated the MDF-file \\
\hline Project & Project that originated the MDF-file \\
\hline Subject & Subject matter in the MDF-file \\
\hline Comment & Open comment field from the MDF-file \\
\hline Version & MDF standard version of the file \\
\hline DataSize & Total size of the data in the MDF-file, in bytes \\
\hline InitialTimestamp & Time when file data acquisition began in UTC or local time \\
\hline ProgramIdentifier & Originating program of the MDF-file \\
\hline Creator & \begin{tabular}{l} 
Structure containing details about creator of the MDF-file, with these \\
fields: VendorName, ToolName, ToolVersion, UserName, and \\
Comment
\end{tabular} \\
\hline Attachment & \begin{tabular}{l} 
Structure of information about attachments contained within the MDF- \\
file, with these fields: Name, Path, Comment, Type, MIMEType, Size, \\
EmbeddedSize, and MD5CheckSum
\end{tabular} \\
\hline ChannelNames & Cell array of the channel names in each channel group \\
\hline ChannelGroup & \begin{tabular}{l} 
Structure of information about channel groups contained within the \\
MDF-file, with these fields: AcquisitionName, Comment, NumSamples, \\
DataSize, Sorted, SourceInfo, and Channel
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Property & D \\
\hline Conversion & C \\
& \\
& \\
& \\
& \\
& \\
\hline
\end{tabular}

\section*{Description}

Conversion option for data in the MDF-file. Supported values are:
- 'Numeric' (default) - Apply only numeric conversion rules
(CC_Type 1-6). Data with non-numeric conversion rules is imported as raw, unconverted values.
- 'None' - Do not apply any conversion rules. All data is imported as raw data.
- 'All' - Apply all numeric and text conversion rules (CC_Type 1-10).

\section*{More About}

\section*{Measurement Data Format (MDF)}

Measurement data format (MDF) files are binary format files for storing measurement data. The format standard is defined by the Association for Standardization of Automation and Measuring Systems (ASAM), which you can read about at ASAM MDF.

Vehicle Network Toolbox \({ }^{\mathrm{TM}}\) and Powertrain Blockset provide access to MDF-files through an object you create with the mdf function.

\section*{See Also}

Functions
saveAttachment | read
Introduced in R2016b

\section*{read}

Read channel data from MDF-file

\section*{Syntax}
```

data = read(mdf0bj)
data = read(mdf0bj,chanList)
data = read(mdf0bj,chanGroupIndex)
data = read(mdf0bj,chanGroupIndex,chanName)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition)
data = read(mdfObj,chanGroupIndex,chanName,startPosition,endPosition)
data = read(

```
\(\qquad\)
``` , Name=Value)
[data,time] = read(___,OutputFormat="Vector")
```


## Description

data $=$ read $(\mathrm{mdfObj})$ reads all data for all channels from the MDF-file identified by the MDF-file object mdfObj, and assigns the output to data. If the file data is one channel group, the output is a timetable; multiple channel groups are returned as a cell array of timetables, where the cell array index corresponds to the channel group number.
data $=$ read(mdf0bj, chanList) reads data for all channels specified in the channel list table chanList.
data $=$ read $(m d f 0 b j$, chanGroupIndex $)$ reads data for all channels in the specified channel group.
data $=$ read $(m d f 0 b j$, chanGroupIndex, chanName) reads data for the specified channels.
data $=$ read(mdfObj,chanGroupIndex, chanName,startPosition) reads data from the position specified by startPosition.
data $=$ read(mdf0bj, chanGroupIndex, chanName,startPosition,endPosition) reads data for the range specified from startPosition to endPosition.
data $=$ read (__ , Name=Value) specifies certain function behaviors using optional name-value pairs.
[data,time] = read( ___,OutputFormat="Vector") returns two vectors: one vector of channel data and a corresponding vector of timestamps. This form of syntax with two output arguments is supported only when OutputFormat="Vector".

## Examples

## Read All Data from MDF-File

Read all available data from the MDF-file.

```
mdfObj = mdf("MDFFile.mf4");
data = read(mdfObj);
```


## Read Raw Data

Read raw data from a specified channel in the first channel group, without applying any conversion rules.

```
mdfObj = mdf("MDFFile.mf4");
data = read(mdf0bj,1,"Unsigned_UInt32_LE_Primary_Offset_0",Conversion="None");
data(1:4,:)
ans =
 4\times1 timetable
 Time Unsigned_UInt32_LE_Primary_Offset_0
 sec 0
 1 sec 1
 2 sec 2
 3 sec 3
```


## Read All Data from Specified Channel List

Read all available data from the MDF-file for channels specified as part of a channel list.

```
mdfObj = mdf("MDFFile.mf4");
chanList = channelList(mdfObj) % Channel table
data = read(mdfObj,chanList(1:3,:)); % First 3 channels
```


## Read All Data from Multiple Channels

Read all available data from the MDF-file for specified channels.

```
mdfObj = mdf("MDFFile.mf4");
data = read(mdf0bj,1,["Channel1","Channel2"]);
```


## Read Range of Data from Specified Index Values

Read a range of data from the MDF-file using indexing for startPosition and endPosition to specify the data range.

```
mdfObj = mdf("MDFFile.mf4");
data = read(mdfObj,1,["Channel1","Channel2"],1,10);
```


## Read Range of Data from Specified Time Values

Read a range of data from the MDF-file using time values for startPosition and endPosition to specify the data range.

```
mdfObj = mdf("MDFFile.mf4");
data = read(mdf0bj,1,["Channel1","Channel2"],seconds(5.5),seconds(7.3));
```


## Read All Data in Vector Format

Read all available data from the MDF-file, returning data and time vectors.

```
mdfObj = mdf("MDFFile.mf4");
[data,time] = read(mdf0bj,1,"Channel1",OutputFormat="Vector");
```


## Read All Data in Time Series Format

Read all available data from the MDF-file, returning time series data.

```
mdfObj = mdf("MDFFile.mf4");
data = read(mdfObj,1,"Channel1",OutputFormat="TimeSeries");
```


## Read Data from Channel List Entry

Read data from a channel identified by the channelList function.
Get list of channels and display their names and group numbers.

```
mdfObj = mdf("File05.mf4");
chlist = channelList(mdfObj);
chlist(1:2,1:2) % Partial listing
```

$2 \times 2$ table

ChannelName
ChannelGroupNumber
"Float_32_LE_Offset_64"
$\qquad$
"Float_64_LE_Primary_Offset_0"
Read data from the first channel in the list.

```
data = read(mdf0bj, chlist{1,2},chlist{1,1});
data(1:5,:)
 5\times1 timetable
 Time Float_32_LE_Offset_64
 0 sec
 0.01 sec
 5.1
 0.02 sec 5.2
```

$$
\begin{array}{ll}
0.03 \mathrm{sec} & 5.3 \\
0.04 \mathrm{sec} & 5.4
\end{array}
$$

## Read Data and Metadata

Read data from an MDFfile into a timetable along with channel group and channel metadata.
Read from channel group 1 into a timetable.

```
mdf0bj = mdf("File05.mf4");
TTout = read(mdf0bj,1,IncludeMetata=true);
TTout.Properties.CustomProperties
```

ans =
CustomProperties with properties:
ChannelGroupAcquisitionName: "
ChannelGroupComment: "Integer Types"
ChannelGroupSourceInfo: [1×1 struct]
ChannelDisplayNo:
ChannelComment: [
ChannelUnit:
ChannelType: [FixedLength FixedLength]
ChannelDataType: [IntegerSignedLittleEndian IntegerUnsignedLittleEndian]
ChannelNumBits: [16 32]
ChannelComponentType: [None None]
ChannelCompositionType: [None None]
ChannelSourceInfo: [1×2 struct]
ChannelReadOption: [Numeric Numeric]

## Input Arguments

```
mdfObj - MDF-file
```

MDF-file object
MDF-file, specified as an MDF-file object.
Example: mdf("MDFFile.mf4")

## chanList - List of channels

table
List of channels, specified as a table in the format returned by the channelList function.
Example: channelList()
Data Types: table

## chanGroupIndex - Index of the channel group

numeric value
Index of channel group, specified as a numeric value that identifies the channel group from which to read.

Example: 1
Data Types: single | double |int8|int16|int32|int64|uint8|uint16|uint32|uint64
chanName - Name of channel
string | char vector

Name of channel, specified as a string, character vector, or array. chanName identifies the name of a channel in the channel group. Use a cell array of character vectors or array of strings to identify multiple channels.

## Example: "Channel1"

Data Types: char \| string | cell

## startPosition - First position of channel data

numeric value | duration
First position of channel data, specified as a numeric value or duration. The startPosition option specifies the first position from which to read channel data. Provide a numeric value to specify an index position; use a duration to specify a time position. If only startPosition is provided without the endPosition option, the data value at that location is returned. When used with endPosition to specify a range, the function returns data from the startPosition (inclusive) to the endPosition (noninclusive).

## Example: 1

Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64| duration

## endPosition - Last position of channel data range

numeric value | duration
Last position of channel data range, specified as a numeric value or duration. The endPosition option specifies the last position for reading a range of channel data. Provide both the startPosition and endPosition to specify retrieval of a range of data. The function returns up to but not including endPosition when reading a range. Provide a numeric value to specify an index position; use a duration to specify a time position.
Example: 1000
Data Types: single | double | int8 | int16| int32 | int64 |uint8|uint16|uint32|uint64 | duration

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Conversion="Numeric"
OutputFormat - Format for output data
"Timetable" (default) | "Vector" | "TimeSeries"
Format for output data, specified as a string or character vector. This option formats the output according to the following table.

OutputFormat	Description
"Timetable"	Return a timetable from one or more channels into one output variable.   This is the only format allowed when reading from multiple channels at the   same time. (Default.)   Note: The timetable format includes variables for the MDF channels.   Because the variable titles must be valid MATLAB identifiers, they might   not be exactly the same as those values in the MDF object ChannelNames   property. The variable headers are derived from the property using the   function mat lab. lang. makeValidName. The original channel names are   available in the VariableDescriptions property of the timetable   object.
"Vector"	Return a vector of numeric data values, and optionally a vector of time   values from one channel. Use one output variable to return only data, or   two output variables to return vectors for both data and time stamps.
"TimeSeries"	Return a time series of data from one channel.

## Example: "Vector"

Data Types: char|string

## Conversion - Conversion option for MDF-file data

"Numeric" (default) | "All"| "None"
Conversion option for MDF-file data, specified as "Numeric", "All ", or "None". The default uses the value specified in the Conversion property of the mdf object. This option overrides that setting.

- "Numeric" - Apply only numeric conversion rules (CC_Type 1-6). Data with non-numeric conversion rules are imported as raw, unconverted values.
- "None" - Do not apply any conversion rules. All data are imported as raw data.
- "All" - Apply all numeric and text conversion rules (CC_Type 1-10).

Example: Conversion="All"
Data Types: char | string

## IncludeMetadata - Read metadata with data

false (default) | true
Read channel group and channel metadata from the MDF-file along with its data. The default value is false. Metadata can only be included when the OutputFormat is specified as "Timetable". The timetable cannot be empty. You can access the metadata in data. Properties.CustomProperties.

Specifying IncludeMetadata=true might impact function performance when reading data from a channel group with many channels.
Example: IncludeMetadata=true
Data Types: logical

## Output Arguments

## data - Channel data

timetable (default) | double | time series | cell array
Channel data, returned as a timetable, cell array of timetables, vector of doubles, or a time series according to the OutputFormat option value and the number of channel groups.

## time - Channel data times

double
Channel data times, returned as a vector of double elements. The time vector is returned only when OutputFormat="Vector".

## See Also

## Functions

mdf|saveAttachment|channelList|mdfWrite|mdfAddChannelGroupMetadata
Topics
"Time Series"
"Represent Dates and Times in MATLAB"
"Tables"
Introduced in R2016b

## saveAttachment

Save attachment from MDF-file

## Syntax

saveAttachment(mdf0bj, AttachmentName)
saveAttachment (mdf0bj, AttachmentName, DestFile)

## Description

saveAttachment (mdf0bj, AttachmentName) saves the specified attachment from the MDF-file to the current MATLAB working folder. The attachment is saved with its existing name.
saveAttachment (mdf0bj, AttachmentName, DestFile) saves the specified attachment from the MDF-file to the given destination. You can specify relative or absolute paths to place the attachment in a specific folder.

## Examples

## Save Attachment with Original Name

Save an MDF-file attachment with its original name in the current folder.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext')
```


## Save Attachment with New Name

Save an MDF-file attachment with a new name in the current folder.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','MyFile.ext')
```


## Save Attachment in Parent Folder

Save an MDF-file attachment in a folder specified with a relative path name, in this case in the parent of the current folder.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','..\MyFile.ext')
```


## Save Attachment in Specified Folder

This example saves an MDF-file attachment using an absolute path name.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','C:\MyDir\MyFile.ext')
```


## Input Arguments

## mdf0bj - MDF-file

MDF-file object
MDF-file, specified as an MDF-file object.
Example: mdf('MDFFile.mf4')

## AttachmentName - MDF-file attachment name <br> char vector | string

MDF-file attachment name, specified as a character vector or string. The name of the attachment is available in the Name field of the MDF-file object Attachment property.

Example: 'file1.dbc'
Data Types: char|string

## DestFile - Destination file name for the saved attachment

existing attachment name (default) | char vector \| string
Destination file name for the saved attachment, specified as a character vector or string. The specified destination can include an absolute or relative path, otherwise the attachment is saved in the current folder.
Example: 'MyFile.ext'
Data Types: char|string

## See Also

## Functions

mdf | read
Introduced in R2016b

## mdfDatastore

Datastore for collection of MDF-files

## Description

Use the MDF datastore object to access data from a collection of MDF-files.

## Creation

## Syntax

mdfds = mdfDatastore(location)
mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,....)

## Description

mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF-file or a collection of files in the folder specified by location. All files in the folder with extensions .mdf, .dat, or .mf4 are included.
mdfds = mdfDatastore( $\qquad$ 'Name1', Value1, 'Name2', Value2, ...) specifies function options and properties of mdfds using optional name-value pairs.

## Input Arguments

## location - Location of MDF datastore files

character vector | cell array | DsFileSet object
Location of MDF datastore files, specified as a character vector, cell array of character vectors, or matlab.io.datastore.DsFileSet object identifying either files or folders. The path can be relative or absolute, and can contain the wildcard character *. If location specifies a folder, by default the datastore includes all files in that folder with the extensions .mdf, .dat, or .mf4.

Example: 'CANape.MF4'
Data Types: char|cell|DsFileSet

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments to set file information or object "Properties" on page 8-15. Allowed options are IncludeSubfolders, FileExtensions, and the properties ReadSize, SelectedChannelGroupNumber, and SelectedChannelNames.
Example: 'SelectedChannelNames', 'Counter_B4'

## IncludeSubfolders - Include files in subfolders

false (default) | true
Include files in subfolders, specified as a logical. Specify true to include files in each folder and recursively in subfolders.

Example: 'IncludeSubfolders',true
Data Types: logical

## FileExtensions - Custom extensions for filenames to include in MDF datastore

 \{'.mdf','.dat','.mf4'\} (default)|char|cellCustom extensions for filenames to include in the MDF datastore, specified as a character vector or cell array of character vectors. By default, the supported extensions include .mdf, . dat, and .mf4. If your files have custom or nonstandard extensions, use this Name-Value setting to include files with those extensions.

Example: 'FileExtensions', \{'.myformat1','.myformat2'\}
Data Types: char | cell

## Properties

## ChannelGroups - All channel groups present in first MDF-file

 tableThis property is read-only.
All channel groups present in first MDF-file, returned as a table.
Data Types: table

## Channels - All channels present in first MDF-file

table
This property is read-only.
All channels present in first MDF-file, returned as a table.
Those channels targeted for reading must have the same name and belong to the same channel group in each file of the MDF datastore.

Data Types: table

## Files - Files included in datastore

char | string | cell
Files included in the datastore, specified as a character vector, string, or cell array.
Example: \{'file1.mf4','file2.mf4'\}
Data Types: char | string | cell

## ReadSize - Size of data returned by read

'file' (default) | numeric | duration
Size of data returned by the read function, specified as 'file', a numeric value, or a duration. A character vector value of ' file' causes the entire file to be read; a numeric double value specifies the number of records to read; and a duration value specifies a time range to read.

If you later change the ReadSize property value type, the datastore resets.
Example: 50

Data Types: double |char |duration
SelectedChannelGroupNumber - Channel group to read
numeric scalar
Channel group to read, specified as a numeric scalar value.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8|uint16|uint32|uint64

## SelectedChannelNames - Names of channels to read

char | string | cell
Names of channels to read, specified as a character vector, string, or cell array.
Those channels targeted for reading must have the same name and belong to the same channel group in each file of the MDF datastore.

## Example: 'Counter_B4'

Data Types: char | string | cell

## Conversion - Conversion option for MDF-file data

'Numeric' (default)|'All' |'None'
Conversion option for MDF-file data, specified as 'Numeric', 'All', or 'None'.

- 'Numeric' (default) - Apply only numeric conversion rules (CC_Type 1-6). Data with nonnumeric conversion rules is imported as raw, unconverted values.
- 'None ' - Do not apply any conversion rules. All data is imported as raw data.
- 'All' - Apply all numeric and text conversion rules (CC_Type 1-10).

Example: 'All'
Data Types: char \| string

## Object Functions

read	Read data in MDF datastore
readall	Read all data in MDF datastore
preview	Subset of data from MDF datastore
reset	Reset MDF datastore to initial state
hasdata	Determine if data is available to read from MDF datastore
partition	Partition MDF datastore
numpartitions	Number of partitions for MDF datastore
combine (MATLAB)	Combine data from multiple datastores
transform (MATLAB)	Transform datastore
isPartitionable (MATLAB)	Determine whether datastore is partitionable
isShuffleable (MATLAB)	Determine whether datastore is shuffleable

## Examples

## Create an MDF Datastore

Create an MDF datastore from the sample file CANape. MF4, and read it into a timetable.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
while hasdata(mdfds)
 m = read(mdfds);
end
```


## See Also

Introduced in R2017b

## hasdata

Package: matlab.io.datastore
Determine if data is available to read from MDF datastore

## Syntax

tf = hasdata(mdfds)

## Description

$\mathrm{tf}=$ hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF datastore specified by mdfds. Otherwise, it returns logical 0 (false).

## Examples

## Check MDF Datastore for Readable Data

Use hasdata in a loop to control read iterations.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
while hasdata(mdfds)
 m = read(mdfds);
end
```


## Input Arguments

mdfds - MDF datastore
MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

## Output Arguments

tf - Indicator of data to read
1 | 0
Indicator of data to read, returned as a logical 1 (true) or 0 (false).

## See Also

## Functions

mdfDatastore | read| readall| reset
Introduced in R2017b

## numpartitions

Package: matlab.io.datastore
Number of partitions for MDF datastore

## Syntax

$\mathrm{N}=$ numpartitions(mdfds)
$\mathrm{N}=$ numpartitions(mdfds, pool)

## Description

$\mathrm{N}=$ numpartitions(mdfds) returns the recommended number of partitions for the MDF datastore mdfds. Use the result as an input to the partition function.
$N=$ numpartitions(mdfds, pool) returns a reasonable number of partitions to parallelize mdfds over the parallel pool, pool, based on the number of files in the datastore and the number of workers in the pool.

## Examples

## Find Recommended Number of Partitions for MDF Datastore

Determine the number of partitions you should use for your MDF datastore.
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
$\mathrm{N}=$ numpartitions(mdfds);

## Input Arguments

mdfds - MDF datastore
MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')
pool - Parallel pool
parallel pool object
Parallel pool specified as a parallel pool object.
Example: gcp

## Output Arguments

## N - Number of partitions <br> double

Number of partitions, returned as a double. This number is the calculated recommendation for the number of partitions for your MDF datastore. Use this when partitioning your datastore with the partition function.

## See Also

## Functions

mdfDatastore |read|reset|partition

Introduced in R2017b

## partition

Package: matlab.io.datastore
Partition MDF datastore

## Syntax

```
subds = partition(mdfds,N,index)
subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)
```


## Description

subds = partition(mdfds, $N$, index) partitions the MDF datastore mdfds into the number of parts specified by N , and returns the partition corresponding to the index index.
subds = partition(mdfds,'Files',index) partitions the MDF datastore by files and returns the partition corresponding to the file of index index in the Files property.
subds = partition(mdfds,'Files',filename) partitions the datastore by files and returns the partition corresponding to the specified filename.

## Examples

## Partition an MDF Datastore into Default Parts

Partition an MDF datastore from the sample file CANape.MF4, and return the first part.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
```

N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);

## Partition an MDF Datastore by Its Files

Partition an MDF datastore according to its files, and return partitions by index and file name.

```
cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files
ans =
 3x1 cell array
 'c:\temp\CANape1.MF4'
 'c:\temp\CANape2.MF4'
 'c:\temp\CANape3.MF4'
```

subds2 = partition(mdfds,'files',2);
subds3 $=$ partition(mdfds,'files','c:\temp\CANape3.MF4');

## Input Arguments

mdfds - MDF datastore
MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')
N - Number of partitions
positive integer
Number of partitions, specified as a double of positive integer value. Use the numpartitions function for the recommended number or partitions.

Example: numpartitions(mdfds)
Data Types: double
index - Index
positive integer
Index, specified as a double of positive integer value. When using the 'files ' partition scheme, this value corresponds to the index of the MDF datastore object Files property.

## Example: 1

Data Types: double

## filename - File name

character vector
File name, specified as a character vector. The argument can specify a relative or absolute path.
Example: 'CANape.MF4'
Data Types: char

## Output Arguments

## subds - MDF datastore partition

MDF datastore object
MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same type as the input datastore mdfds.

## See Also

## Functions

mdfDatastore | read | reset | numpartitions

## Introduced in R2017b

## preview

Package: matlab.io.datastore
Subset of data from MDF datastore

## Syntax

data $=$ preview(mdfds)

## Description

data $=$ preview(mdfds) returns a subset of data from MDF datastore mdfds without changing the current position in the datastore.

## Examples

## Examine Preview of MDF Datastore

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
data = preview(mdfds)
data2 =
 10\times74 timetable
```

            Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM
    | 0.00082554 | sec | 0 | 0 | 1 | 0 |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 0.010826 | sec | 0 | 0 | 1 | 0 |
| 0.020826 | sec | 0 | 0 | 1 | 0 |
| 0.030826 | sec | 0 | 0 | 1 | 100 |
| 0.040826 | sec | 0 | 0 | 1 | 100 |
| 0.050826 | sec | 0 | 0 | 1 | 100 |
| 0.060826 | sec | 0 | 0 | 1 | 0 |
| 0.070826 | sec | 0 | 0 | 1 | 0 |

## Input Arguments

mdfds - MDF datastore
MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

## Output Arguments

data - Subset of data
timetable
Subset of data, returned as a timetable of MDF records.

## See Also

## Functions

mdfDatastore | read | hasdata
Introduced in R2017b

## read

Package: matlab.io.datastore
Read data in MDF datastore

## Syntax

```
data = read(mdfds)
[data,info] = read(mdfds)
```


## Description

data $=$ read $(\mathrm{mdfds})$ reads data from the MDF datastore specified by mdfds, and returns a timetable.

The read function returns a subset of data from the datastore. The size of the subset is determined by the ReadSize property of the datastore object. On the first call, read starts reading from the beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous call. Use reset to read from the beginning again.
[data,info] = read(mdfds) also returns to the output argument info information, including metadata, about the extracted data.

## Examples

## Read Datastore by Files

Read data from an MDF datastore one file at a time.

```
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);
```

Read the second file and view information about the data.

```
[data2,info2] = read(mdfds);
info2
 struct with fields:
 Filename: 'CANape2.MF4'
 FileSize: 57592
 MDFFileProperties: [1\times1 struct]
```


## Input Arguments

mdfds - MDF datastore
MDF datastore object
MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

## Output Arguments

## data - Output data

timetable
Output data, returned as a timetable of MDF records.
info - Information about data
structure array
Information about data, returned as a structure array with the following fields:
Filename
FileSize
MDFFileProperties

## See Also

## Functions

mdfDatastore | readall| preview| reset | hasdata
Introduced in R2017b

## readall

Package: matlab.io.datastore
Read all data in MDF datastore

## Syntax

data $=$ readall(mdfds)
data $=$ readall(mdfds,"UseParallel",true)

## Description

data $=$ readall $(\mathrm{mdfds})$ reads all the data in the MDF datastore specified by mdfds, and returns a timetable.

After the readall function returns all the data, it resets mdfds to point to the beginning of the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.
data $=$ readall(mdfds,"UseParallel", true) specifies to use a parallel pool to read all of the data. By default, the "UseParallel" option is false. The choice of pool depends on the following conditions:

- If you already have a parallel pool running, that pool is used.
- If your parallel preference settings allow a pool to automatically start, this syntax will start one, using the default cluster.
- If no pool is running and one cannot automatically start, this syntax does not use parallel functionality.


## Examples

## Read All Data in Datastore

Read all the data from a multiple file MDF datastore into a timetable.

```
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds);
```


## Read All Data in Datastore

Use a parallel pool to read all the data from the datastore into a timetable.
mdfds = mdfDatastore(\{'CANape1.MF4','CANape2.MF4','CANape3.MF4'\});
data $=$ readall(mdfds,"UseParallel",true);

## Input Arguments

mdfds - MDF datastore
MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

## Output Arguments

data - Output data
timetable
Output data, returned as a timetable of MDF records.

## See Also

## Functions

mdfDatastore | read | preview | reset | hasdata
Introduced in R2017b

## reset

Package: matlab.io.datastore
Reset MDF datastore to initial state

## Syntax

reset(mdfds)

## Description

reset (mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data has been read from it. Resetting allows you to reread from the same datastore.

## Examples

## Reset MDF Datastore

Reset an MDF datastore so that you can read from it again.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);
```


## Input Arguments

mdfds - MDF datastore
MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

## See Also

## Functions

mdfDatastore | read | hasdata
Introduced in R2017b

## channelList

Information on available MDF groups and channels

## Syntax

```
chans = channelList(mdfobj)
channelList(mdfObj,chanName)
channelList(mdf0bj,chanName,'ExactMatch',true)
```


## Description

chans = channelList(mdfobj) returns a table of information about channels and groups in the specified MDF-file.
channelList(mdfObj, chanName) searches the MDF-file to generate a list of channels matching the specified channel name. The search by default is case-insensitive and identifies partial matches. A table is returned containing information about the matched channels and the containing channel groups. If no matches are found, an empty table is returned.
channelList(mdf0bj, chanName, 'ExactMatch',true) searches the channels for an exact match, including case sensitivity. This is useful if a channel name is a substring of other channel names.

## Examples

## View Available MDF Channels

View all available MDF channels.

```
mdf0bj = mdf('File01.mf4');
chans = channelList(mdfObj)
```

chans $=$
$4 \times 9$ table
ChannelName
ChannelGroupNumber
ChannelGroupNumSamples
"Float_32_LE_Offset_64"
"Float_64_LE_Primary_Offset_0"
"Signed Int16 LE Offset 32"
"Unsigned_UInt 32_LE_Primary_0ffset_0"
—
-

## 10000 <br> 10000 <br> 10000 <br> 10000

## View Specific MDF Channels

Filter on channel names.

```
chans = channelList(mdfObj,'Float')
```

chans =
$\qquad$
-
"Float_64_LE_Primarȳ_0ffset_0"
$\square$
10000
chans = channelList(mdf0bj,'Float','ExactMatch',true)
chans =
$0 \times 9$ empty table

## Input Arguments

## mdf0bj - MDF-file

MDF-file object
MDF-file, specified as an MDF-file object.
Example: mdf('File01.mf4')

## chanName - Name of channel

char vector | string
Name of channel, specified as a character vector or string. By default, case-insensitive and partial matches are returned.

Example: 'Channel1'
Data Types: char|string

## Output Arguments

## chans - Information on available MDF channels

table
Information on available MDF channels, returned as a table. To access specific elements, you can index into the table.

## See Also

Functions
mdf

Introduced in R2018b

## mdfVisualize

View channel data from MDF-file

## Syntax

mdfVisualize(mdfFileName)

## Description

mdfVisualize(mdfFileName) opens an MDF-file in the Simulation Data Inspector for viewing and interacting with channel data. mdfFileName is the name of the MDF-file, specified as a full or partial path.

Note mdfVisualize supports only integer and floating point data types in MDF-file channels.

## Examples

View MDF Data
View the data from a specified MDF-file in the Simulation Data Inspector.
mdfVisualize('File01.mf4')

## Input Arguments

mdfFileName - MDF-file name
char vector | string
MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char|string

## See Also

## Functions

mdf \| read

## Topics

"View and Analyze Simulation Results"

Introduced in R2019a

## autoblks.pwr.PlantInfo

Analyze powertrain power and energy

## Description

To assess powertrain efficiencies, use the autoblks.pwr.PlantInfo object to evaluate and report power and energy for component-level blocks and system-level reference applications.

## Creation

## Syntax

VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName)

## Description

MATLAB creates an autoblks. pwr. PlantInfo object for the system that you specify. VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName) where SysName is the name of the model or subsystem that you want to analyze.

## Input Arguments

## SysName - Model name

character vector
Model that you want to analyze.
Example: 'SiCiPtReferenceApplication'
Data Types: char

## Properties

## AvgEff - Average efficiency double

This property is read-only.
Average efficiency, dimensionless.

## Eff - Time series of efficiency

time series
This property is read-only.
Efficiency, $\eta$, dimensionless. To calculate the efficiency, the Eff property implements this equation.

$$
\eta=\left|\frac{\sum P_{\text {output }}-\sum P_{\text {store }}\left(P_{\text {store }}>0\right)}{\sum P_{\text {input }}-\sum P_{\text {store }}\left(P_{\text {store }}<0\right)}\right|
$$

The equation uses these variables.

$$
\begin{array}{ll}
P_{\text {store }} & \text { Stored power } \\
P_{\text {input }}, & P_{\text {output }}
\end{array} \quad \text { Input and output power logged by Power Accounting Bus }
$$

## EnrgyBalanceAbsTol - Energy balance absolute tolerance

### 0.0100 (default)

Energy balance absolute tolerance, EnrgyBal AbsTol .
To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.

$$
E_{E r r}=\sum E_{\text {trans }}+\sum E_{\text {nottrans }}-\sum E_{\text {store }}
$$

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.

$$
E_{\text {total }}=\frac{1}{2}\left(\int_{0}^{t_{\text {end }}}\left(\sum\left|P_{\text {trans }}\right|+\sum\left|P_{\text {nottrans }}\right|+\sum\left|P_{\text {store }}\right|\right) d t \|_{t=t_{\text {end }}}\right.
$$

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.

Condition			
$\frac{\left\|E_{\text {Err }}\right\|}{E_{\text {total }}}<$ EnrgyBal $_{\text {RelTol }}$	or	$E_{\text {total }}<$ EnrgyBal $_{\text {AbsTol }}$	

The equations use these variables.

$$
\begin{aligned}
& E_{\text {Err }} \\
& E_{\text {total }} \\
& \text { EnrgyBal }_{\text {RelTol }} \text { EnrgyBal }_{\text {AbsTol }} \\
& P_{\text {trans }}, E_{\text {trans }} \\
& P_{\text {nottrans }}, E_{\text {nottrans }}
\end{aligned}
$$

$P_{\text {store }}, E_{\text {store }}$
$P_{\text {input }}, P_{\text {output }}$

Stored power and energy, respectively
Input and output power logged by Power Accounting Bus Creator block

## Data Types: double

## EnrgyBalanceRelTol - Energy balance relative tolerance

0.0100 (default)

Energy balance relative tolerance, EnrgyBal $_{\text {RelTol }}$.
To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.

$$
E_{E r r}=\sum E_{\text {trans }}+\sum E_{\text {nottrans }}-\sum E_{\text {store }}
$$

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.

$$
E_{\text {total }}=\frac{1}{2}\left(\int_{0}^{t_{\text {end }}}\left(\sum\left|P_{\text {trans }}\right|+\sum\left|P_{\text {nottrans }}\right|+\sum\left|P_{\text {store }}\right|\right) d t \|_{t=t_{\text {end }}}\right.
$$

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.

## Condition

$\frac{\left\|E_{\text {Err }}\right\|}{E_{\text {total }}}<$ EnrgyBal $_{\text {RelTol }}$	or	$E_{\text {total }}<$ EnrgyBal $_{\text {AbsTol }}$

The equations use these variables.
$E_{\text {Err }}$
$E_{\text {total }}$
EnrgyBal $_{\text {RelTol }}$, EnrgyBal $_{\text {AbsTol }}$
$P_{\text {trans }}, E_{\text {trans }}$
$P_{\text {nottrans }}, E_{\text {nottrans }}$
$P_{\text {store }}, E_{\text {store }}$
$P_{\text {input }}, P_{\text {output }}$

## Energy conservation error

Total energy modified by block
Energy balance relative and absolute tolerance, respectively
Transferred power and energy, respectively
Not transferred power and energy, respectively
Stored power and energy, respectively
Input and output power logged by Power Accounting Bus Creator block

Data Types: double

## EnrgyUnits - Energy units

MJ (default) | J
Energy units.
Example: VehPwrAnalysis.EnrgyUnits = 'MJ';
Data Types: char
PwrUnits - Power units
kW (default) | W
Power units.
Example: VehPwrAnalysis.PwrUnits = 'kW';
Data Types: char

## Object Methods

addLoggedData	Add logged data
dispSignalSummary	Display powertrain subsystem energy analysis
dispSysSummary	Display powertrain system efficiency
findChildSys	Powertrain subsystem energy analysis
histogramEff	Display powertrain subsystem efficiency histogram
isEnrgyBalanced	Logical flag for energy conservation
loggingOff	Turn signal logging off
loggingOn	Turn signal logging on
run	Run powertrain energy and power analysis
sdiSummary	Display Simulation Data Inspector plots of powertrain energy and power
xlsSysSummary	Write powertrain energy analysis to spreadsheet

## Examples

## Create PlantInfo Object for Powertrain Energy Analysis

Analyze the power and energy in the conventional vehicle reference application. To create a PlantInfo object, see "step 2" on page 8-36.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

```
autoblkConVehStart
```

2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results. dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks. pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.

```
sdiSummary(VehPwrAnalysis, {EngSysName,DrvtrnSysName})
```


## See Also

Power Accounting Bus Creator

## Topics

"Conventional Vehicle Powertrain Efficiency"
"Analyze Power and Energy"

## Introduced in R2019a

## dispSignalSummary

Display powertrain subsystem energy analysis

## Syntax

dispSignalSummary(SubSystem)

## Description

The dispSignalSummary (SubSystem) method displays the subsystem energy for the autoblks.pwr.PlantInfo object. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the subsystem that you want to analyze, use the dispSignalSummary (SubSystem) method to display the results.

## Examples

## Use dispSignalSummary Method to Display Subsystem Results

Analyze the power and energy in the conventional vehicle reference application. To use the dispSignalSummary method to display the engine and drivetrain subsystem results, see "step 6 " on page 8-38 and "step 7" on page 8-39.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

## autoblkConVehStart

2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.
sdiSummary(VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

## Input Arguments

## SubSystem - Subsystem name

character vector
Subsystem that you want to analyze.
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char

## See Also

autoblks.pwr.PlantInfo

## Topics

"Analyze Power and Energy"

## Introduced in R2019a

## dispSysSummary

Display powertrain system efficiency

## Syntax

dispSysSummary(PlantInfoObj)

## Description

After you use the run method to analyze the powertrain power and energy, use the dispSysSummary (PlantInfoObj) method to display the system efficiency for the autoblks.pwr.PlantInfo object.

Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

## Examples

## Use dispSysSummary Method to Display Energy Analysis Results

Analyze the power and energy in the conventional vehicle reference application. To use the dispSysSummary method to display the results, see "step 4" on page 8-40.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary (VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
7 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary(VehPwrAnalysis,\{EngSysName, DrvtrnSysName\})

## Input Arguments

## PlantInfoObj - Instance of PlantInfo object

autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## See Also

autoblks.pwr.PlantInfo

## Topics

"Analyze Power and Energy"
Introduced in R2019a

## findChildSys

Powertrain subsystem energy analysis

## Syntax

findChildSys(PlantInfoObj,SubSystem)

## Description

The findChildSys(PlantInfoObj, SubSystem) method finds and returns an autoblks.pwr.PlantInfo object for the subsystem. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level reference applications.

After you use the run method to analyze the powertrain power and energy, use the findChildSys method to evaluate specific subsystems.

## Examples

## Use findChildSys Method to Analyze Subsystems

Analyze the power and energy in the conventional vehicle reference application. To use the findChildSys method to analyze the engine and drivetrain subsystems, see "step 6" on page 8-42 and "step 7" on page 8-43.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

```
autoblkConVehStart
```

2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary (VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.

```
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
```

6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.
sdiSummary (VehPwrAnalysis,\{EngSysName, DrvtrnSysName\})

## Input Arguments

PlantInfoObj - Instance of PlantInfo object
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## SubSystem - Subsystem name

character vector
Subsystem that you want to analyze.
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char

## See Also

autoblks.pwr.PlantInfo

## Topics

"Analyze Power and Energy"

## Introduced in R2019a

## histogramEff

Display powertrain subsystem efficiency histogram

## Syntax

histogramEff(SubSystem)

## Description

The histogramEff(SubSystem) method displays a histogram of the powertrain subsystem efficiency for the autoblks.pwr.PlantInfo object. Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the findChildSys method to analyze the powertrain subsystem power and energy, use the histogramEff method to display a histogram of the efficiency.

## Examples

## Use histogramEff Method to Display Results

Analyze the power and energy in the conventional vehicle reference application. To use the histogramEff method to display a histogram of the time spent at each engine plant efficiency, see "step 6" on page 8-44.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.

```
autoblkConVehStart
```

2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.

```
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary (VehPwrAnalysis, 'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.
sdiSummary(VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

## Input Arguments

## SubSystem - Subsystem name

character vector
Subsystem that you want to analyze.
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char

## See Also

autoblks.pwr.PlantInfo

## Topics

"Analyze Power and Energy"

## Introduced in R2019a

## run

Run powertrain energy and power analysis

## Syntax

run(PlantInfoObj)

## Description

Use the run (PlantInfoObj) method to turn signal logging on, run a powertrain energy and power analysis, and add data to the autoblks.pwr. PlantInfo object. Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

## Examples

## Use run Method for Powertrain Energy Analysis

Analyze the power and energy in the conventional vehicle reference application. To use the run method for the analysis, see "step 3 " on page 8-46.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary (VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
7 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.

```
sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})
```


## Input Arguments

## PlantInfoObj - Instance of PlantInfo object

autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## See Also

autoblks.pwr.PlantInfo

## Topics

"Analyze Power and Energy"
Introduced in R2019a

## sdiSummary

Display Simulation Data Inspector plots of powertrain energy and power

## Syntax

sdiSummary(PlantInfoObj, blocknames)

## Description

The sdiSummary (PlantInfoObj, blocknames) method plots the powertrain energy and power analysis results for the autoblks.pwr. PlantInfo object.

Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

## Examples

## Use sdiSummary Method to Plot Results

Analyze the power and energy in the conventional vehicle reference application. To use the sdiSummary method to display the Simulation Data Inspector plots of the engine and drivetrain results, see "step 8" on page 8-49.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
3 Use the run method to turn on logging, run simulation, and add logged data to the object.

```
run(VehPwrAnalysis);
```

4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary (VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
```

```
sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})
```

```
sdiSummary(VehPwrAnalysis,{EngSysName,DrvtrnSysName})
```


## Input Arguments

## PlantInfoObj - Instance of PlantInfo object

autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## blocknames - Block or name

character vector | string | 'all'
Block or subsystem names, specified as a character vector or a string, separated by a comma.
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/
Engine','SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char | string

## See Also

autoblks.pwr.PlantInfo

## Topics

"Analyze Power and Energy"
Simulation Data Inspector
Introduced in R2019a

## xlsSysSummary

Write powertrain energy analysis to spreadsheet

## Syntax

xlsSysSummary(PlantInfoObj,filename, sheet)

## Description

The xlsSysSummary (PlantInfoObj,filename, sheet) method exports the system energy and efficiency for the autoblks.pwr.PlantInfo object. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the run method to analyze the powertrain power and energy, use the xlsSysSummary method to write the results to a spreadsheet.

## Examples

## Use xlsSysSummary Method to Write Results to Spreadsheet

Analyze the power and energy in the conventional vehicle reference application. To use the xl sSysSummary method to write the results to a spreadsheet, see "step 5 " on page 8-50.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary (VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.

Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

```
EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);
```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.

```
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain';
DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName);
dispSignalSummary(DrvtrnPwrAnalysis);
```

8 To plot the results, use the sdiSummary method.
sdiSummary(VehPwrAnalysis,\{EngSysName,DrvtrnSysName\})

## Input Arguments

## PlantInfoObj - Instance of PlantInfo object

autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## filename - File name <br> character vector | string

File name, specified as a character vector or a string.
If filename does not exist, $x$ lsSysSummary creates a file, determining the format based on the specified extension. To create a file compatible with Excel ${ }^{\circledR}$ 97-2003 software, specify an extension of .xls. To create files in Excel 2007 formats, specify an extension of .xlsx, .xlsb, or .xlsm. If you do not specify an extension, $x$ lsSysSummary uses the default, .xls.

```
Example: 'myFile.xlsx' or "myFile.xlsx"
Example: 'C:\myFolder\myFile.xlsx'
Example: 'myFile.csv'
Data Types: char|string
```


## sheet - Worksheet name

character vector | string | positive integer
Worksheet name, specified as one of the following:

- Character vector or string that contains the worksheet name. The name cannot contain a colon (:). To determine the names of the sheets in a spreadsheet file, use xlsfinfo.
- Positive integer that indicates the worksheet index.

If sheet does not exist, $x$ lswrite adds a sheet at the end of the worksheet collection. If sheet is an index larger than the number of worksheets, xlswrite appends empty sheets until the number of worksheets in the workbook equals sheet. In either case, xl swrite generates a warning indicating that it has added a worksheet.

Data Types: char|string|single | double | int8|int16|int32|int64|uint8|uint16| uint32 |uint64

## See Also

autoblks.pwr.PlantInfo|xlswrite

## Topics

"Analyze Power and Energy"
Introduced in R2019a

## addLoggedData

Add logged data

## Syntax

addLoggedData(PlantInfoObj,logsout)

## Description

addLoggedData(PlantInfoObj,logsout) adds logged signal data to the autoblks.pwr.PlantInfo object specified by the Simulink.SimulationData.Dataset signal data object.

If the data logged for the system does not conserve energy, the method returns a warning.
If the Simulink.SimulationData.Dataset object does not include data for the Power Accounting Bus Creator blocks in the system, the method returns an error.

## Input Arguments

## PlantInfoObj - Instance of PlantInfo object

autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.
logsout - Dataset object for signals
Simulink. SimulationData. Dataset object
Simulink. SimulationData. Dataset object for signals that you want to log.

## See Also

Power Accounting Bus Creator | autoblks.pwr. PlantInfo

## Topics

"Analyze Power and Energy"
Introduced in R2019a

## isEnrgyBalanced

Logical flag for energy conservation

## Syntax

flag=isEnrgyBalanced(PlantInfoObj)

## Description

flag=isEnrgyBalanced(PlantInfoObj) returns logical 1 (true) if the system conserves energy. Otherwise, it returns logical 0 (false).

## Input Arguments

PlantInfoObj - Instance of PlantInfo object
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## Output Arguments

## flag - Indicator of energy conservation

1 (true)| 0 (false)
Indicator of energy conservation, returned as a logical 1 (true) or 0 (false).
Data Types: logical

## Algorithms

To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.

$$
E_{E r r}=\sum E_{\text {trans }}+\sum E_{\text {nottrans }}-\sum E_{\text {store }}
$$

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.

$$
E_{\text {total }}=\frac{1}{2}\left(\int_{0}^{t_{\text {end }}}\left(\sum\left|P_{\text {trans }}\right|+\sum\left|P_{\text {nottrans }}\right|+\sum\left|P_{\text {storel }}\right|\right) d t \|_{t=t_{\text {end }}}\right.
$$

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.

Condition		
$\frac{\left\|E_{\text {Err }}\right\|}{E_{\text {total }}<\text { EnrgyBal }_{\text {RelTol }}}$	or	$E_{\text {total }}<$ EnrgyBal $_{\text {AbsTol }}$

The equations use these variables.

$E_{\text {Err }}$	Energy conservation error
$E_{\text {total }}$	Total energy modified by block
EnrgyBal $_{\text {RelTol }}$, EnrgyBal $_{\text {AbsTol }}$	Energy balance relative and absolute tolerance, respectively
$P_{\text {trans }}, E_{\text {trans }}$	Transferred power and energy, respectively
$P_{\text {nottrans }}, E_{\text {nottrans }}$	Not transferred power and energy, respectively
$P_{\text {store, }}, E_{\text {store }}$	Stored power and energy, respectively
$P_{\text {input }}, P_{\text {output }}$	Input and output power logged by Power Accounting Bus
	Creator block

## See Also

Power Accounting Bus Creator | autoblks.pwr. PlantInfo

## Topics

"Analyze Power and Energy"

## Introduced in R2019a

## loggingOff

Turn signal logging off

## Syntax

loggingOff(PlantInfoObj)

## Description

loggingOff(PlantInfoObj) turns signal logging off for all Power Accounting Bus Creator blocks in the autoblks.pwr.PlantInfo system object.

## Input Arguments

PlantInfoObj - Instance of PlantInfo object
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## See Also

Power Accounting Bus Creator | autoblks.pwr. PlantInfo

## Topics

"Analyze Power and Energy"
Introduced in R2019a

## loggingOn

Turn signal logging on

## Syntax

loggingOn(PlantInfoObj)

## Description

loggingOn (PlantInfoObj) turns signal logging on for all Power Accounting Bus Creator blocks in the autoblks.pwr.PlantInfo system object.

## Input Arguments

PlantInfoObj - Instance of PlantInfo object
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

## See Also

Power Accounting Bus Creator | autoblks.pwr. PlantInfo

## Topics

"Analyze Power and Energy"
Introduced in R2019a

## Battery.PulseSequence

Define a single pulse sequence

## Description

Use the Battery.PulseSequence object to define a single experimental pulse sequence at a specific temperature and pulse current magnitude.

You can place multiple experimental pulse sequences into an array of Battery. PulseSequence objects. To do so, create a Battery. PulseSequence object for each experimental pulse sequence instance.

To use the Battery.PulseSequence object and methods, you need these products:

- Powertrain Blockset
- Curve Fitting Toolbox ${ }^{\mathrm{TM}}$
- Optimization Toolbox ${ }^{\mathrm{TM}}$
- Parallel Computing Toolbox ${ }^{\mathrm{TM}}$
- Simulink Design Optimization


## Creation

## Syntax

psObj = Battery.PulseSequence

## Description

MATLAB creates a ps0bj = Battery.PulseSequence object that defines a pulse sequence.

## Properties

## Data - Raw data

m-by-5 array
An m-by-5 array of pulse sequence data. Use the addData object function to add the data. addData computes the charge and state of charge (SOC), using the assumption that the experimental test ranges is $0 \%$ to $100 \%$ SOC.

Array Element	Description	Unit
Data $(m, 1)$	Time	S
Data $(m, 2)$	Voltage	V
Data $(m, 3)$	Current	A
Data $(m, 4)$	Charge	A•s


Array Element	Description	Unit
Data $(\mathrm{m}, 5)$	State of charge (SOC)	Dimensionless

## Data Types: double

ModelName - Name of model
character vector
Name of the model to use for simulation
Example: 'BatteryEstim3RC_PTBS'
Data Types: char
MetaData - Battery. MetaData object properties
0-by-1 array
Battery. MetaData object properties containing metadata for the data.
Data Types: function_handle

## Capacity - Pulse sequence capacity

scalar
Capacity observed as the difference between lowest and highest energy, in A•s. Calculated by the addData method, but can be overwritten.

Example: 0.0
Data Types: double

## Parameters - Battery. Parameters object properties

0 -by-1 array
Battery. Parameters object containing the most recently determined battery equivalent circuit parameters.

Data Types: function_handle

## ParametersHistory - Battery. ParametersHistory object properties

0-by-1 array
Battery. ParametersHistory object array containing the history of the battery equivalent circuit parameters through different estimation steps. The last element is the most recent parameter set.

Data Types: function_handle

## Object Functions

addData createPulses estimateInitialEmR0 estimateInitialEmRx estimateInitialTau estimateParameters getSocIdxForPulses loadDataFromMatFile

Import pulse sequence experimental data
Identify pulses and create pulse objects from experimental data
Estimate open circuit voltage and series resistance
Estimate open circuit voltage and RC pair resistance
Estimate RC pair time constant
Estimate parameters
Return state of charge index for pulses
Load pulse data from a MAT-file

plot	Plot pulse sequence data
plotIdentifiedPulses	Plot identified pulses
plotLatestParameters	Plot latest pulse sequence parameters
plotSimulationResults	Plot pulse sequence simulation results
populatePulseParameters	Populate pulse parameters
removePulses	Remove pulses from sequence
repairTimeVector	Repair time vector

## Examples

## Add File Data to Battery. PulseSequence Object

This example shows how to add data to a Battery. PulseSequence object.
Create a pulse sequence object.

```
ps0bj = Battery.PulseSequence;
```

disp(ps0bj)

Load data from a file.
FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time, voltage, current] = Bāttery.loadDataFromMatFile(FileName);
Add the data to the pulse sequence.

```
addData(psObj,time,voltage,current);
```


## See Also

Battery.MetaData|Battery.Parameters|Battery.Pulse|sdo.OptimizeOptions

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

## Introduced in R2016b

## addData

Import pulse sequence experimental data

## Syntax

```
addData(psObj,Time,Voltage,Current)
```


## Description

addData(ps0bj,Time, Voltage,Current) adds the pulse sequence experimental data to the Battery.PulseSequence object. The Time, Voltage, and Current input arrays must have equal lengths. addData computes the charge and state of charge (SOC), using the assumption that the experimental test range is $0 \%$ to $100 \%$ SOC.

## Examples

## Add Data to Battery. PulseSequence Object

This example shows how to add data to a Battery.PulseSequence object.
Create a pulse sequence object.

```
ps0bj = Battery.PulseSequence;
```

disp(ps0bj)

Load data from a file.

```
FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time,voltage,current] = Bāttery.loadDataFromMatFile(FileName);
```

Add the data to the pulse sequence.
addData(psObj,time, voltage, current);

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Time - Time

m-by-1 array
m-by-1 array of time data, in s.
Data Types: double
Voltage - Voltage
m-by-1 array
m-by-1 array of voltage data, in V.
Data Types: double

## Current - Current

m-by-1 array
m-by-1 array of current data, in A.
Data Types: double

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## IoadDataFromMatFile

Load pulse data from a MAT-file

## Syntax

[Time,Voltage,Current] = loadDataFromMatFile(FileName)
[Time,Voltage,Current] = loadDataFromMatFile(FileName,Name,Value)

## Description

[Time,Voltage,Current] = loadDataFromMatFile(FileName) function loads pulse data from a MAT-file.
[Time,Voltage,Current] = loadDataFromMatFile(FileName,Name,Value) function loads pulse data from a MAT-file with additional options specified by one or more Name, Value pair arguments.

## Examples

## Load File Data to Battery. PulseSequence Object

This example shows how to add data to a Battery. PulseSequence object.
Create a pulse sequence object.

```
ps0bj = Battery.PulseSequence;
```

disp(psObj);

Load data from a file.
FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time, voltage, current] = Bāttery.loadDataFromMatFile(FileName);
Add the data to the pulse sequence.
addData(psObj,time, voltage, current);

## Input Arguments

FileName - Path or file name
untitled.mat (default) | path, or MAT-file name
Path or file name of the MAT-file that contains the pulse sequence data.
Example: 'Synthetic_LiPo_PulseDischarge.mat'
Data Types: char

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Battery.loadDataFromMatFile(FileName,'TimeVariable', 'myTimeVariable')
TimeVariable - Time variable in MAT-file
time (default)| character vector
Use this value to specify the time variable to search for in the MAT-file. If unspecified, the method searches for variables containing 'time'.

Example: Battery.loadDataFromMatFile(FileName,'TimeVariable','myTimeVariable')
Data Types: char
VoltageVariable - Voltage variable in MAT-file
volt (default)|character vector
Use this value to specify the voltage variable to search for in the MAT-file. If unspecified, the method searches for variables containing 'voltage'.
Example:
Battery.loadDataFromMatFile(FileName,'VoltageVariable','myVoltageVariable')
Data Types: char

## CurrentVariable - Current variable in MAT-file

current (default)| character vector
Use this value to specify the current variable to search for in the MAT-file. If unspecified, the method searches for variables containing 'current'.

Example:
Battery.loadDataFromMatFile(FileName,'CurrentVariable','myCurrentVariable')
Data Types: char

## Output Arguments

## Time - Time

m-by-1 array
m-by-1 array of time data, in s.
Data Types: double

## Voltage - Voltage

m-by-1 array
$m$-by-1 array of voltage data, in V .
Data Types: double

## Current - Current

m-by-1 array
m-by-1 array of current data, in A.
Data Types: double

## See Also

Battery.PulseSequence
Topics
"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

## createPulses

Identify pulses and create pulse objects from experimental data

## Syntax

createPulses(ps0bj)
createPulses(ps0bj, Name, Value)

## Description

createPulses(psObj) identifies the location of pulse events. Creates separate pulse objects from the Battery.PulseSequence object experimental data.
createPulses (psObj, Name, Value) identifies the location of pulse events. Creates separate pulse objects from the Battery. PulseSequence object experimental data with additional options specified by one or more Name, Value pair arguments.

## Examples

## Create Pulse Objects from Data

This example shows how to create pulse objects from data.
Create a pulse sequence object.
ps0bj = Battery.PulseSequence;
disp(ps0bj)
Load data from a file.
FileName = 'Synthetic_LiPo_PulseDischarge.mat';
[time,voltage,current] = Battery.loadDataFromMatFile(FileName);
Add the data to the pulse sequence.

```
addData(psObj,time,voltage,current);
```

Create pulse objects from data.

```
createPulses(ps0bj,...
 'Current0nThreshold',0.1,...
 'NumRCBranches',3,...
 'RCBranchesUse2TimeConstants',false,...
 'PreBufferSamples',10,...
 'PostBufferSamples',15);
```


## Input Arguments

## psObj - Instance of Battery. PulseSequence class

Battery. PulseSequence object

Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: createPulses (ps0bj, 'Current0nThreshold ', 0.1)

## CurrentOnThreshold - Minimum current magnitude

0.025 (default) | scalar

Use this value to specify the minimum current magnitude for identifying the pulse locations, in A. The createPulses function considers values below the CurrentOnThrehsold as relaxation or measurement noise.

Example: createPulses(ps0bj,'Current0nThreshold', 0.1)
Data Types: double

## NumRCBranches - Number of RC branches

3 (default) | scalar
Use this value to specify the number of RC branches. To change the number of branches after an estimation, you must rerun createPulses along with any estimation steps. Rerunning ensures that the estimation parameters are the right size.
Example: createPulses (ps0bj, 'NumRCBranches ' , 4)
Data Types: uint32
RCBranchesUse2TimeConstants - Use load and relaxation time constants false

The createPulses function does not support using separate time constants for load and relaxation when it estimates each RC branch. If you set the value to true, the createPul ses function might produce an error.
Example: createPulses(ps0bj, 'RCBranchesUse2TimeConstants',false)
Data Types: logical
PreBufferSamples - Data samples to retain before pulse estimation
10 (default) | scalar
Use this value to specify the number of data samples to retain before pulse estimation. The buffer allows the estimation to focus on matching the measured data before the pulse begins.
Example: createPulses(ps0bj, 'PreBufferSamples', 5)
Data Types: uint32

## PostBufferSamples - Data samples to retain for next estimation 15 (default) | scalar

Use this value to specify the number of samples to retain before the next pulse estimation. The buffer allows the estimation to focus on matching the transition when the next pulse begins. Typically, the
end transition of one pulse and the starting transition at the next pulse are at the same state of charge (SOC). Therefore, both transitions help determine the parameter values at that SOC breakpoint.
Example: createPulses(ps0bj, 'PostBufferSamples',14)
Data Types: uint32
PulseRequires2Samples - Pulse requires two consecutive samples under current false (default)

Use this value to specify that there must be two consecutive samples under current to define a pulse. Set to true if occasional noise spikes in the current measurement trigger a false pulse detection. By default, the value is false, indicating that a single sample above the threshold detects a pulse event.
Example: createPulses(ps0bj,'PulseRequires2Samples',true)
Data Types: logical

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## estimateInitialEmR0

Estimate open circuit voltage and series resistance

## Syntax

estimateInitialEmR0(ps0bj)
estimateInitialEmR0(ps0bj,Name, Value)

## Description

estimateInitialEmR0(ps0bj) estimates the open circuit voltage, Em, and series resistance, Ro, for the Battery. PulseSequence object data. For the estimation, the method uses data points around each pulse transition. The method uses estimated values to determine the minimum and maximum constraint values. The method stores the results in an Battery. Parameters object.
estimateInitialEmR0(psObj,Name, Value) estimates the open circuit voltage, Em, and series resistance, Ro, for the Battery. PulseSequence object data with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery. PulseSequence object for the pulse sequence that you want to analyze.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
estimateInitialEmR0(ps0bj,'SetEmConstraints',false,'EstimateEm',true,'Estimat eR0',true)

## SetEmConstraints - Use open circuit voltage constraints

true (default)
Use this value to specify if the method constrains the open circuit voltage, Eo, to within maximum or minimum values. To determine the maximum and minimum voltage, the method uses the voltage at the end of relaxation as a constraint for future estimation steps.

If the pulse is a discharge pulse, the voltage rises during relaxation. The final relaxation voltage is set to the minimum constraint for Eo at the corresponding state of charge (SOC).

If the pulse is a charge pulse, the voltage falls during relaxation. The final relaxation voltage is set to the maximum constraint at the corresponding SOC.

Example: estimateInitialEmR0(ps0bj, 'SetEmConstraints',false)
Data Types: logical

## EstimateEm - Estimate open circuit voltage

true (default) | false
Use this value to specify if the method estimates the open circuit voltage, Em. Use the default setting, true, unless you have already defined the Em values from outside analysis.
Example: eestimateInitialEmR0(ps0bj, 'EstimateEm' ,false)
Data Types: logical

## EstimateR0 - Estimate series resistance

true (default) | false
Use this value to specify if the method estimates the series resistance, $R 0$. Use the default setting, true, unless you have already defined the $R 0$ values from outside analysis.

Example: estimateInitialEmR0(ps0bj, 'EstimateR0' , false)
Data Types: logical

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## estimateInitialEmRx

Estimate open circuit voltage and RC pair resistance

## Syntax

estimateInitialEmRx(ps0bj)
estimateInitialEmRx (ps0bj, Name, Value)

## Description

estimateInitialEmRx (psObj) estimates the open circuit voltage, Em, and RC pair resistance, $E x$, for the Battery. PulseSequence object data. For the estimation, the method solves a linear system of equations throughout the pulse sequence. The method stores the results in a Battery. Parameters object.
estimateInitialEmRx(ps0bj,Name,Value) estimates the open circuit voltage, Em, and RC pair resistance, Ex, for the Battery. PulseSequence object data with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example:
estimateInitialEmRx(psObj,'IgnoreRelaxation',false,'ShowPlots',true,'ShowBefo
rePlots',true,'PlotDelay',0.5,'EstimateEm',true)
```


## EstimateEm - Estimate voltage

```
true (default) | false
```

Use this value to specify if the method estimates the open circuit voltage, Em.
Example: estimateInitialEmRx(ps0bj,'EstimateEm',false)
Data Types: logical

## RetainEm - Retain voltage estimate

true (default) | false

Use this value to specify if the method retains the open circuit voltage, Em, estimate. Set to true if you want the method to use an external open circuit voltage to state of charge (SOC) relationship. If EstimateEm is false, this option does not apply.
Example: estimateInitialEmRx(ps0bj,'RetainEm' ,false)
Data Types: logical

## EstimateR0 - Estimate series resistance

true (default) | false
Use this value to specify if the method estimates the series resistance, Ro.
Example: estimateInitialEmRx(ps0bj, 'EstimateR0',false)
Data Types: logical

## RetainR0 - Retain series resistance

true (default) | false
Use this value to specify if the method retains the identified series resistance, Ro, estimate. Set to true if you want the method to use an existing series resistance to state of charge (SOC) relationship. If EstimateEm is false, this option does not apply.

Example: estimateInitialEmRx(ps0bj, 'RetainR0', false)
Data Types: logical

## ShowPlots - Show estimation plots

false (default) |true
Use this value to specify if the method shows plots during each estimation step.

## Example: estimateInitialEmRx(ps0bj,'ShowPlots',true)

Data Types: logical

## ShowBeforePlots - Show before estimation plots

false (default) | true
Use this value to specify if the method shows before plots during each estimation step. If ShowPlots is false, this option does not apply.
Example: estimateInitialEmRx(ps0bj,'ShowBeforePlots',true)
Data Types: logical

## PlotDelay - Plot delay

0.0 (default) | scalar

Use this value to specify the time delay after showing the plots, in s.
Example: estimateInitialEmRx(ps0bj,'PlotDelay', 0.1)
Data Types: double

## IgnoreRelaxation - Estimate series resistance

false (default) | true
Use this value to specify if the method completely ignores the relaxation and fits only the main pulse.

Example: estimateInitialEmRx(ps0bj,'IgnoreRelaxation',true)
Data Types: logical

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

## estimateInitialTau

Estimate RC pair time constant

## Syntax

estimateInitialTau(ps0bj)
estimateInitialTau(psObj,Name, Value)

## Description

estimateInitialTau(ps0bj) estimates the RC pair time constant, Tau for the Battery.PulseSequence object data. For the estimation, the method fits the relaxation curve for each pulse. The method stores the results in an Battery. Parameters object.
estimateInitialTau(psObj,Name, Value) estimates the RC pair time constant, Tau for the Battery.PulseSequence object data with additional options specified by one or more Name, Value pair arguments.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery. PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

## Example:

estimateInitialTau(ps0bj,'UpdateEndingEm',false,'ShowPlots',true,'ReusePlotFi
gure',true,'UseLoadData',false,'PlotDelay', 0.5)

## ShowPlots - Show estimation plots

false (default) | true
Use this value to specify if the method shows plots during each estimation step.
Example: estimateInitialTau(ps0bj, 'ShowPlots', true)
Data Types: logical

## PlotDelay - Plot delay

0.0 (default) | scalar

Use this value to specify the time delay after showing the plots, in s.
Example: estimateInitialTau(ps0bj, 'PlotDelay', 0.5)

Data Types: double

## ReusePlotFigure - Reuse plots

## true (default) | false

Use this value to specify if the method reuses the same plot figure. If false, the estimation plots are in separate figure windows. If ShowPlots is false, the option does not apply.
Example: estimateInitialTau(ps0bj, 'ReusePlotFigure', true)
Data Types: logical
UpdateEndingEm - Update voltage estimate
false (default)|true
Use this value to specify if the method updates the open circuit voltage estimate at the end of the relaxation, based on the curve fits.

Example: estimateInitialTau(ps0bj, 'UpdateEndingEm' ,true)
Data Types: logical

## UseLoadData - Plot delay

false (default) | true
Use this value to specify if the method uses the pulse load data, instead of pulse relaxation data, to estimate the time constant, Tau. By default, the setting is false, and the method uses the pulse relaxation to estimate the time constant.

Example: estimateInitialTau(ps0bj, 'UseLoadData', true)
Data Types: logical

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

## Introduced in R2016b

## estimateParameters

Estimate parameters

## Syntax

estimateParameters(ps0bj)
estimateParameters(psObj,Name, Value)

## Description

estimateParameters (psObj) estimates the parameters in the Battery.Parameters object. The method stores the results in an Battery. Parameters object.
estimateParameters(ps0bj,Name, Value) estimates the parameters in the Battery. Parameters object data with additional options specified by one or more Name, Value pair arguments.

To use the Battery.PulseSequence object and methods, you need these products:

- Powertrain Blockset
- Curve Fitting Toolbox
- Optimization Toolbox
- Parallel Computing Toolbox
- Simulink Design Optimization


## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example:
estimateParameters(ps0bj,'CarryParamToNextPulse',true,'ShowPlots',true,'Estim
ateEm',true,'RetainEm',true,'EstimateR0',true,'RetainR0',true)
```


## CarryParamsToNextPulse - Use results for next SOC

```
false (default)| true
```

Use this value to specify if the method uses the identified current pulse final state of charge (SOC) parameter values as the initial estimate for the parameter values at the next SOC.

Example: estimateParameters(ps0bj, 'CarryParamsToNextPulse',true)
Data Types: logical

## EstimateEm - Estimate voltage <br> true (default) | false

Use this value to specify if the method estimates the open circuit voltage, Em.
Example: estimateParameters(ps0bj, 'EstimateEm',false)
Data Types: logical

## RetainEm - Retain voltage estimate

true (default) | false
Use this value to specify if the method retains the identified open circuit voltage, Em, estimate. If EstimateEm is false, this option does to apply.
Example: estimateParameters(ps0bj, 'RetainEm',false)
Data Types: logical

## EstimateR0 - Estimate series resistance <br> true (default) | false

Use this value to specify if the method estimates the series resistance, $R 0$.
Example: estimateParameters(ps0bj, 'EstimateR0' ,false)
Data Types: logical

## RetainR0 - Retain series resistance

true (default) | false
Use this value to specify if the method retains the series resistance, Ro, estimate. If EstimateR0 is false, this option does to apply.

Example: estimateParameters(ps0bj,'RetainR0',false)
Data Types: logical

## SDOOptimizeOptions - Specify optimization options

'Method' is lsqnonlin and 'UseParallel' is true (default)
Use this value to specify the sdo. OptimizeOptions object options. For example:

```
SDOOptimizeOptions = sdo.OptimizeOptions(...
 'OptimizedModel',psObj.ModelName, ...
 'Method','lsqnonlin',...
 'UseParallel','always')
```


## ShowPlots - Show estimation plots

false (default)|true
Use this value to specify if the method shows plots during each estimation step.
Example: estimateParameters(ps0bj, 'ShowPlots',true)
Data Types: logical

## ReusePlotFigure - Reuse plots

true (default) | false
Use this value to specify if the method reuses the same plot figure. If false, the estimation plots are in separate figure windows. If ShowPlots is false, the option does not apply.

Example: estimateParameters(ps0bj, 'ReusePlotFigure',true)
Data Types: logical

## PlotDelay - Plot delay

5.0 (default) | scalar

Use this value to specify the time delay after showing the plots, in s.
Example: estimateParameters(ps0bj,'PlotDelay' , 0.1)
Data Types: double

## PulseNumbers - Pulse numbers

1 (default) | scalar
Use this value to specify the pulse numbers to estimate. The default value, 1 , is set to estimate all the pulses.
Data Types: uint32

## See Also

Battery.PulseSequence|sdo.OptimizeOptions

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

## Introduced in R2016b

## getSocIdxForPulses

Return state of charge index for pulses

## Syntax

idx=getSocIdxForPulses(ps0bj, pulseList)

## Description

idx=getSocIdxForPulses(ps0bj, pulseList) returns the row vector index of the state of charge (SOC) lookup table breakpoints.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery. PulseSequence object for the pulse sequence that you want to analyze.
pulseList - Index of pulses
1:NumPulses (default)
Index of pulses. For example, 1:10.
Data Types: int16

## Output Arguments

## idx - Indices into SOC lookup table

1-by-NumPulses array
Indices into SOC lookup table.
Data Types: int16

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

## plot

Plot pulse sequence data

## Syntax

plot_handle = plot(psObj)

## Description

plot_handle = plot(ps0bj) plots the data from a Battery.PulseSequence object.

## Input Arguments

ps0bj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Output Arguments

plot_handle - Plot handle
object handle
Handles to plot objects.
Data Types: function_handle

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## plotIdentifiedPulses

Plot identified pulses

## Syntax

plot_handle = plotIdentifiedPulses(psObj)

## Description

plot_handle = plotIdentifiedPulses(psObj) plots identified pulses from a Battery.PulseSequence object.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Output Arguments

plot_handle - Plot handle
object handle
Handles to plot objects.
Data Types: function_handle

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## plotLatestParameters

Plot latest pulse sequence parameters

## Syntax

plot_handle = plotLatestParameters(psObj)

## Description

plot_handle = plotLatestParameters(psObj) plots the latest pulse sequence parameters from a Battery. PulseSequence object.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.

## Output Arguments

plot_handle - Plot handle
object handle
Handles to plot objects.
Data Types: function_handle

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## plotSimulationResults

Plot pulse sequence simulation results

## Syntax

plot_handle=plotSimulationResults(ps0bj)
plot_handle=plotSimulationResults(psObj, param)

## Description

plot_handle=plotSimulationResults(psObj) plots the simulation results of the pulse sequence based on the current parameter values.
plot_handle=plotSimulationResults(psObj, param) plots the simulation results of the pulse sequence based on the parameter values specified by the Battery. Parameter object.

## Input Arguments

ps0bj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.
param - Instance of Battery. Parameter class
Battery. Parameter object
Battery.Parameter object for the parameters that you want to analyze.

## Output Arguments

plot_handle - Plot handle
object handle
Handles to plot objects.
Data Types: function_handle

## See Also

Battery. PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

# populatePulseParameters 

Populate pulse parameters

## Syntax

populatePulseParameters(ps0bj)

## Description

populatePulseParameters(psObj) populates parameters in the Battery.PulseSequence object based on the series of pulse objects. If the pulse objects are new, updated, or filtered, populatePulseParameters updates the identified pulse indices, SOC breakpoints, and parameters objects in Battery. PulseSequence.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery. PulseSequence object
Battery. PulseSequence object for the pulse sequence that you want to analyze.

See Also<br>Battery.PulseSequence<br>\section*{Topics}<br>"Generate Parameter Data for Datasheet Battery Block"<br>"Generate Parameter Data for Equivalent Circuit Battery Block"<br>Introduced in R2016b

## removePulses

Remove pulses from sequence

## Syntax

removePulses(psObj,idxRemove)

## Description

removePulses(ps0bj,idxRemove) removes pulses from sequence specified by the Battery.PulseSequence object.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery.PulseSequence object for the pulse sequence that you want to analyze.
idxRemove - Index of pulse objects to remove
1:NumPulses (default)
Index of pulse objects to remove. For example, 1:10.
Data Types: int16

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

# repairTimeVector 

Repair time vector

## Syntax

repairTimeVector(ps0bj)
repairTimeVector(ps0bj, MinDeltaT)

## Description

repairTimeVector( psObj ) repairs common problems with the experimental time vector on the Battery.PulseSequence object.
repairTimeVector(ps0bj, MinDeltaT) repairs common problems with the experimental time vector on the Battery. PulseSequence object using a minimum time difference.

## Input Arguments

psObj - Instance of Battery. PulseSequence class
Battery.PulseSequence object
Battery. PulseSequence object for the pulse sequence that you want to analyze.

## MinDeltaT - Minimum time difference

scalar
Index of pulse objects to remove. For example, 1:10.
Data Types: double

## See Also

Battery.PulseSequence

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## Battery.Pulse

Define a single pulse event

## Description

Use the Battery.Pulse object to define a single experimental pulse event. To create a pulse object, use the Battery. PulseSequence object function createPulses.

To use the Battery. Pulse object and methods, you need these products:

- Powertrain Blockset
- Curve Fitting Toolbox
- Optimization Toolbox
- Parallel Computing Toolbox
- Simulink Design Optimization


## Creation

## Syntax

pulseObj = Battery.Pulse(Battery.PulseSequence)

## Description

MATLAB creates a pulseObj = Battery.Pulse(Battery.PulseSequence) object that defines a single pulse event.

## Properties

## Data - Raw data

1-by-5 array
An 1-by-5 array of pulse event data.

Array Element	Description	Unit
Data $(1,1)$	Time	s
Data $(1,2)$	Voltage	V
Data $(1,3)$	Current	A
Data $(1,4)$	Charge	A•s
Data $(1,5)$	State of charge (SOC)	Dimensionless

## InitialCapVoltage - Initial capacitor voltage <br> array

Initial voltage of each capacitor during a pulse event, in V. Property set by the Battery.PulseSequence object function estimateParameters, based on the simulated end voltage or a prior pulse.

Data Types: double

## InitialChargeDeficit - Initial charge deficit

0.0 (default) | scalar

Initial charge deficit at start of pulse event, in A•s. Property set by the Battery.PulseSequence object function createPulses when the function creates the series of Battery. Pulse objects.

Example: 0.0
Data Types: double

## idxLoad - Indices to load data

[1 0] (default)
Indices to load data where the pulse event load begins and ends. Property set by the Battery. PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.

Data Types: int16
idxRelax - Indices to relaxation data
[1 0] (default)
Indices to relaxation data where the pulse event relaxation begins and ends. Property set by the Battery. PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.
Data Types: int16

## idxPulseSequence - Index to first pulse event data

[] (default)
Index to first pulse event data point in the Battery. PulseSequence object data. Property set by the Battery. PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.
Data Types: int16

## IsDischarge - Discharge pulse

true (default)
Use this value to specify if pulse is a discharge pulse event. Property set by the Battery. PulseSequence object function createPulses when the function creates the series of Battery.Pulse objects.
Data Types: logical

## Parameters - Battery. Parameters object properties

0 -by-1 array

Battery. Parameters object containing the most recently determined battery equivalent circuit parameters. Property set by the Battery. PulseSequence object function createPulses when the function creates the series of Battery. Pulse objects.
Data Types: function_handle

## ParametersHistory - Battery. ParametersHistory object properties

0-by-1 array
Battery. ParametersHistory object array containing the history of the battery equivalent circuit parameters through different estimation steps. The last element is the most recent parameter set.
Data Types: function_handle

## Object Functions

plot Plot pulse event data
getLoadData Retrieve experimental data during load phase of pulse
getRelaxationData Retrieve experimental data during relaxation phase of pulse
getTransitionData Retrieve experimental data during transition phase of pulse

## Examples

## Create Battery.Pulse Object

This example shows how to create a Battery. Pulse object.
pulse0bj $=$ Battery.Pulse(ps0bj);

## See Also

Battery.MetaData|Battery.Parameters | Battery.PulseSequence |
sdo.0ptimize0ptions
Topics
"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## plot

Plot pulse event data

## Syntax

plot_handle=plot(pulseObj)

## Description

plot_handle=plot(pulseObj) plots the data from a Battery.Pulse object.

## Input Arguments

pulseObj - Instance of Battery. Pulse class
Battery. Pulse object
Battery. Pulse object for the pulse event that you want to analyze.

## Output Arguments

plot_handle - Plot handle
object handle
Handles to plot objects.
Data Types: function_handle

## See Also

Battery.Pulse

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## getLoadData

Retrieve experimental data during load phase of pulse

## Syntax

LoadData $=$ plot(pulseObj,Buffer)

## Description

LoadData = plot(pulse0bj,Buffer) retrieves the experimental data from a Battery.Pulse object during the load phase of a pulse.

## Input Arguments

pulseObj - Instance of Battery. Pulse class
Battery.Pulse object
Battery.Pulse object for the pulse event that you want to analyze.

## Buffer - Number of samples

vector
Number of buffer samples before and after the load data, in the form
[BeforeBufferSize, AfterBufferSize]. Use the buffer to ensure that the estimation has sufficient data before and after a transition.

## Output Arguments

LoadData - Load data
array
Load data during pulse event.
Data Types: double

## See Also

Battery.Pulse

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

## getRelaxationData

Retrieve experimental data during relaxation phase of pulse

## Syntax

RelaxationData $=$ plot(pulseObj,Buffer)

## Description

RelaxationData $=$ plot(pulse0bj,Buffer) retrieves the experimental data from a Battery. Pulse object during the relaxation phase of a pulse.

## Input Arguments

pulseObj - Instance of Battery. Pulse class
Battery.Pulse object
Battery.Pulse object for the pulse event that you want to analyze.
Buffer - Number of samples
vector
Number of buffer samples before and after the load data, in the form
[BeforeBufferSize, AfterBufferSize]. Use the buffer to ensure that the estimation has sufficient data before and after a transition.

## Output Arguments

## RelaxationData - Relaxation data

array
Relaxation data during pulse event.
Data Types: double

## See Also

Battery.Pulse

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

## getTransitionData

Retrieve experimental data during transition phase of pulse

## Syntax

[TransitionDataBefore,TransitionDataAfter]=plot(pulseObj,idx)
[TransitionDataBefore,TransitionDataAfter]=plot(pulse0bj,idx, Buffer)

## Description

[TransitionDataBefore,TransitionDataAfter]=plot(pulseObj,idx) retrieves the transition data from a Battery. Pulse object during the transition phase of a pulse.
[TransitionDataBefore,TransitionDataAfter]=plot(pulseObj,idx, Buffer) retrieves buffered experimental data from a Battery. Pulse object during the transition phase of a pulse.

## Input Arguments

## pulseObj - Instance of Battery. Pulse class

Battery.Pulse object
Battery. Pulse object for the pulse event that you want to analyze.

## idx - Transition data index

scalar
Index of transition data.
Data Types: int16
Buffer - Number of samples
vector
Number of buffer samples before and after the load data, in the form [BeforeBufferSize, AfterBufferSize]. Use the buffer to ensure that the estimation has sufficient data before and after a transition.

## Output Arguments

TransitionDataBefore - Data before transition array

Data before transition during pulse event.
Data Types: double
TransitionDataAfter - Data after transition
array
Data after transition during pulse event.

Data Types: double

## See Also

Battery.Pulse

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

## Battery.Parameters

Define battery equivalent circuit parameters

## Description

Use the Battery. Parameters object to define the battery equivalent circuit parameters.
Battery. Parameters objects are contained in the Battery.PulseSequence and
Battery.Pulse objects. The pulse sequence estimation sets some of the Battery.Parameters properties. You can override the properties by manually setting the properties. The number of pulses, $N$, in the dataset determines the length of each array.

## Creation

## Syntax

param0bj = Battery.Parameters

## Description

MATLAB creates a paramObj = Battery.Parameters object that defines the battery equivalent circuit parameters.

## Properties

## SOC - State of charge breakpoints

1-by-11 array (default)
A 1-by-N array of the state of charge (SOC) breakpoints.
Data Types: double

## Em - Open circuit voltage

1-by-11 array (default)
A 1-by-N array of the open circuit voltage, in V .
Data Types: double
EmMin - Minimum open circuit voltage
1-by-11 array (default)
A 1-by-N array of the minimum open circuit voltage, in V .
Data Types: double
EmMax - Maximum open circuit voltage
1-by-11 array (default)
A 1-by-N array of the maximum open circuit voltage, in V .

Data Types: double

## R0 - Terminal resistance

1-by-11 array (default)
A 1-by-N array of the terminal resistance, in Ohms.
Data Types: double
R0Min - Minimum terminal resistance
1-by-11 array (default)
A 1-by-N array of the minimum terminal resistance, in Ohms.
Data Types: double

## R0Max - Maximum terminal resistance

1-by-11 array (default)
A 1-by-N array of the maximum terminal resistance, in Ohms.
Data Types: double
Rx - RC pair resistance
3-by-11 array (default)
A 3-by-N array of the RC pair resistance, in Ohms.
Data Types: double
RxMin - Minimum RC pair resistance
3-by-11 array (default)
A 3-by-N array of the minimum RC pair resistance, in Ohms.
Data Types: double

## RxMax - Maximum RC pair resistance

3-by-11 array (default)
A 3-by-N array of the maximum RC pair resistance, in Ohms.
Data Types: double

## Tx - RC pair time constant

3-by-11 array (default)
A 3-by-N array of the RC pair time constant, in s.
Data Types: double
TxMin - Minimum RC pair time constant
3-by-11 array (default)
A 3-by-N array of the minimum RC pair time constant, in s.
Data Types: double
TxMax - Maximum RC pair time constant
3-by-11 array (default)

A 3-by-N array of the maximum RC pair time constant, in s.
Data Types: double

Object Functions<br>lookupSocFromVoltage Determine SOC from voltage<br>plot<br>Plot battery parameter data

## Examples

## Create Battery. Parameters Object

This example shows how to create a Battery. Parameters object.
Create a Battery. Parameters object.
paramObj=Battery. Parameters;

## See Also

Battery.MetaData|Battery.PulseSequence|Battery.Pulse|sdo.OptimizeOptions
Topics
"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## lookupSocFromVoltage

Determine SOC from voltage

## Syntax

SOC=lookupSocFromVoltage (paramObj, Voltage)

## Description

SOC=lookupSocFromVoltage (paramObj, Voltage) calculates the state of charge (SOC) from the voltage for a given open-circuit voltage. Use lookupSocFromVoltage after you know the opencircuit voltage, Em, value.

## Input Arguments

param0bj - Instance of Battery. Parameters class
Battery.Parameters object
Battery. Parameters object for the battery that you want to analyze.
Voltage - Open circuit voltage
scalar
Open circuit voltage, in V.
Data Types: char

## Output Arguments

SOC - State of charge
scalar
State of charge.
Data Types: double

## See Also

Battery.Parameters
Topics
"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

## plot

Plot battery parameter data

## Syntax

plot_handle=plot(param0bj)
plot_handle=plot(param0bj, LegendNames)

## Description

plot_handle=plot (param0bj) plots the data from a Battery. Parameters object.
plot_handle=plot(paramObj, LegendNames) plots the data from a Battery.Parameters object with the legend names.

## Input Arguments

## param0bj - Instance of Battery. Pulse class

Battery. Parameters object
Battery. Parameters object for the battery that you want to analyze.
LegendNames - Plot legends
character vector
Name of plot legends.
Data Types: char

## Output Arguments

plot_handle - Plot handle
object handle
Handles to plot objects.
Data Types: function_handle

## See Also

Battery.Parameters
Topics
"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"
Introduced in R2016b

## Battery.MetaData

Define battery metadata

## Description

Use the Battery.MetaData object to define the battery metadata. A Battery.PulseSequence object contains the Battery. MetaData object. You must specify the metadata values.

## Creation

## Syntax

batmetaObj = Battery.MetaData

## Description

MATLAB creates a batmetaObj = Battery.MetaData object that defines the battery metadata.

## Properties

## BatteryId - Battery identification

character vector
Battery identification name.
Data Types: double
RatingAh - Battery rating
character vector
Battery rating.
Data Types: char
Name - Dataset name
character vector
Dataset name.
Data Types: char
Date - Dataset date
character vector
Dataset date.
Data Types: char

## Source - Dataset source

character vector

Dataset source.
Data Types: char

## TestType - Experimental data type

character vector
Test type, for example charge or discharge.
Data Types: char

## TestCurrent - Test current

scalar
Test current, in A.
Data Types: double

## TestTemperature - Test temperature

scalar
Test temperature, in C.
Data Types: double

## Examples

## Create Battery.MetaData Object and Set Properties

This example shows how to create a Battery. MetaData object and set properties.
Create a Battery. MetaData object.
batmeta0bj=Battery.MetaData;
Set Battery. MetaData properties.

```
batmetaObj.BatteryId='myBatteryId';
batmeta0bj.RatingAh='myRatingAh';
batmeta0bj.Name='myName';
batmeta0bj.Date='myDate';
batmeta0bj.Source='mySource';
batmeta0bj.TestType='Charge';
batmeta0bj.TestCurrent=300;
batmeta0bj.TestCurrent=120;
Display Battery. MetaData properties.
```

disp(batmeta0bj)

## See Also

Battery.Parameters|Battery.PulseSequence|Battery.Pulse

## Topics

"Generate Parameter Data for Datasheet Battery Block"
"Generate Parameter Data for Equivalent Circuit Battery Block"

Introduced in R2016b

Apps

## Virtual Vehicle Composer

Configure, build, and analyze a virtual automotive vehicle

## Description

The Virtual Vehicle Composer app enables you to configure and build a virtual vehicle that you can use for system-level performance analysis, including component sizing, fuel economy, drive cycle tracking, software integration testing, and hardware-in-the-loop (HIL) testing. Use the app to quickly enter your vehicle parameter data, build a virtual vehicle model, run test scenarios, and analyze the results.

The virtual vehicle model contains the blocks and reference application subsystems available with Powertrain Blockset and Vehicle Dynamics Blockset ${ }^{\mathrm{mm}}$. You can use the app to quickly configure the architecture and enter parameter data.

If you have Powertrain Blockset, use the app to:

- Design tradeoff analysis and component sizing.
- Configure hybrid-electric vehicle (HEV) architectures.

If you have Vehicle Dynamics Blockset, use the app to:

- Analyze ride-and-handling effects of standard test maneuvers.
- Visualize your virtual vehicle in Unreal Engine ${ }^{\circledR}$ simulation environment.

To build, operate, and analyze your virtual vehicle, use Composer tab in the Virtual Vehicle Composer to follow these workflow steps:

Step	Section	Button		Description
1	Configure	$\mathscr{L}$	Vehicle Data	Specify the vehicle architecture, dynamics model, chassis, powertrain, and driver. For each selection, enter the vehicle parameter data.
2		$1:$	Vehicle Scenario and Test	Select the scenario to use to test your virtual vehicle. Options include drive cycle scenarios for longitudinal studies and standard test maneuvers for vehicle dynamics studies.
3		四	Data Logging Editor	Select the model signal data to log when operating your virtual vehicle. Options include vehicle position, velocity, and acceleration.
4	Build	$\Leftrightarrow$	Virtual Vehicle	Build your virtual vehicle. When you build, the Virtual Vehicle Composer creates a Simulink model that contains the vehicle architecture and the data that you specify in the configuration.
5	Operate	$\bullet$	Run Test Plan	Simulate your model in the scenarios that you specify in step 2.
6	Analyze	0	Simulation Data Inspector	Use the Simulation Data Inspector to view and inspect the simulation signals that you select in step 3.

## Required Products

The Virtual Vehicle Composer requires either of these products:

- "Powertrain Blockset"
- "Vehicle Dynamics Blockset"

If you want to run your virtual vehicle in the Unreal Engine 3D simulation environment, see the requirements in "Unreal Engine Simulation Environment Requirements and Limitations" (Vehicle Dynamics Blockset).

## Vehicle Data

Use the app to quickly enter your virtual vehicle parameter data for the vehicle architecture, vehicle dynamics model, chassis, powertrain, and driver. For each selection, enter the parameter data.

Parameter	Description
Vehicle	Use the parameters to specify the vehicle type. By default, the parameter is set to   Conventional Vehicle. The conventional vehicle architecture has a spark-   ignition (SI) internal combustion engine, transmission, chassis, and associated   powertrain control algorithms.   If you have Powertrain Blockset, you can specify these model architectures for   hybrid electric vehicles (HEVs). The HEV and EV model architectures include an   internal combustion engine, chassis, transmission, battery, motor, generator, and   associated powertrain control algorithms.
Vehicle Model	Use the parameter setting Longitudinal Vehicle Dynamics to configure a   model suitable for fuel economy and energy management analysis.   If you have Vehicle Dynamics Blockset, you can specify Lateral Vehicle   Dynamics to configure a model suitable for vehicle handling, stability, and ride   comfort analysis.   The virtual vehicle uses the Z-up coordinate system as defined in SAE J670 and   ISO 8855. For more information, see "Coordinate Systems in Vehicle Dynamics   Blockset" (Vehicle Dynamics Blockset).

$\left.\left.\begin{array}{|l|l|}\hline \text { Parameter } & \text { Description } \\ \hline \text { Chassis } & \begin{array}{l}\text { Use the Chassis parameters to select the tire, brake type, steering system, and } \\ \text { suspension systems for your virtual vehicle. } \\ \text { If you have Powertrain Blockset, you can set Tire to Longitudinal Tire, which } \\ \text { implements a tire model suitable for longitudinal vehicle dynamics studies, } \\ \text { including fuel economy and energy management analysis. } \\ \text { If you have Vehicle Dynamics Blockset, you can set Tire to Longitudinal } \\ \text { Combined Slip Tire, which implements a tire model suitable for lateral vehicle } \\ \text { dynamics studies, including vehicle handling, stability, and ride comfort analysis. } \\ \text { The model implements longitudinal and lateral behavior of a wheel characterized } \\ \text { by the Magic Formula. You can use fitted tire data sets provided by the Global } \\ \text { Center for Automotive Performance Simulation (GCAPS). } \\ \text { If you have Vehicle Dynamics Blockset and set Vehicle Model to Lateral }\end{array} \\ \text { Vehicle Dynamics, you can specify Steering System and Suspension } \\ \text { parameters. }\end{array} \right\rvert\, \begin{array}{l}\text { Select the engine, transmission, drivetrain, differential system, vehicle control } \\ \text { unit, and electrical system parameters for your virtual vehicle. The available } \\ \text { parameters depend on the product license, vehicle architecture, and vehicle } \\ \text { model. }\end{array}\right\}$

## Vehicle Scenario and Test

Select the scenario to use to test your virtual vehicle.
If you set Scenario to Drive Cycle, you can use:

- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Install Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables that define your own drive cycles.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

If you have Vehicle Dynamics Blockset and set Vehicle Model to Lateral Vehicle Dynamics, you can select maneuvers for vehicle handling, stability, and ride analysis. Maneuvers include:

- Double Lane Change
- Increasing Steer
- Constant Radius

If you want to run your virtual vehicle in the Unreal Engine 3D simulation environment, set
Simulation 3D to Enable. For hardware requirements, see "Unreal Engine Simulation Environment Requirements and Limitations" (Vehicle Dynamics Blockset).

## Data Logging Editor

Select the model signal data to log when operating your virtual vehicle. Options include vehicle position, velocity, and acceleration. By default, the app lists frequently-used signals.

## Virtual Vehicle

Build your virtual vehicle. When you build, the Virtual Vehicle Composer creates a Simulink model that contains the specified vehicle architecture and data.

## Run Test Plan

Simulate your model in the scenario that you specified in Vehicle Scenario and Test.

## Simulation Data Inspector

Use the Simulation Data Inspector to view and inspect the simulation signals.
If you run your virtual vehicle through more than one test scenario, the Simulation Data Inspector displays the results from the last simulation. To see results from previous simulations, load the archived results.


## Open the Virtual Vehicle Composer App

- MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
- MATLAB Command Window: Enter virtualVehicleComposer.


## Examples

- "Get Started with the Virtual Vehicle Composer"


## Parameters

## Architecture and Model

## Vehicle Architecture - Hybrid electric, conventional, or electric vehicle

Conventional Vehicle|Electric Vehicle|Hybrid Electric IPS|Hybrid Electric MM |Hybrid Electric P0|Hybrid Electric P1|Hybrid Electric P2|Hybrid Electric P3 |Hybrid Electric P4

These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Conventional Vehicle	$\checkmark$	$\checkmark$	Model architecture for a vehicle with a spark-ignition (SI) internal combustion engine, transmission, and associated powertrain control algorithms.
Electric Vehicle	$\checkmark$	$\checkmark$	Model architecture for an electric vehicle (EV) with a motor-generator, battery, directdrive transmission, and associated powertrain control algorithms.
Hybrid Electric IPS	$\checkmark$		Model architecture for a input power split (IPS) hybrid electric vehicle (HEV) with an internal combustion engine, transmission, battery, motor, generator, and associated powertrain control algorithms.
Hybrid Electric MM	$\checkmark$		Model architecture for a multimode HEV with an internal combustion engine, transmission, battery, motor, generator, and associated powertrain control algorithms.
Hybrid Electric P0	$\checkmark$		Model architecture for a HEV P0 with an internal combustion engine, transmission, battery, motor, generator, and associated powertrain control algorithms.
Hybrid Electric P1	$\checkmark$		Model architecture for a HEV P1 with an internal combustion engine, transmission, battery, motor, generator, and associated powertrain control algorithms.


Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Hybrid Electric P2	$\boldsymbol{\checkmark}$		Model architecture for a HEV P2 with an   internal combustion engine, transmission,   battery, motor, generator, and associated   powertrain control algorithms.
Hybrid Electric P3	$\boldsymbol{v}$		Model architecture for a HEV P3 with an   internal combustion engine, transmission,   battery, motor, generator, and associated   powertrain control algorithms.
Hybrid Electric P4	$\boldsymbol{\checkmark}$		Model architecture for a HEV P4 with an   internal combustion engine, transmission,   battery, motor, generator, and associated   powertrain control algorithms.

## Vehicle Model - Virtual vehicle longitudinal or lateral vehicle dynamics

Longitudinal vehicle dynamics|Lateral Vehicle Dynamics
These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Longitudinal   Vehicle Dynamics	$\checkmark$	$\checkmark$	Model suitable for fuel economy and energy   management analysis.
Lateral Vehicle   Dynamics		$\boldsymbol{\checkmark}$	Model suitable for vehicle handling, stability,   and ride comfort analysis.

## Chassis

## Tire - Virtual vehicle tires

Longitudinal Tire|Longitudinal Combined Slip Tire
These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Longitudinal Tire	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Tire model suitable for longitudinal vehicle   dynamics studies, including fuel economy   and energy management analysis.


Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Longitudinal Combined Slip Tire		$\checkmark$	Tire models suitable for lateral vehicle dynamics studies, including vehicle handling, stability, and ride comfort analysis.   Tire model implements the longitudinal and lateral behavior of a wheel characterized by the Magic Formula. You can use fitted tire data sets provided by the Global Center for Automotive Performance Simulation (GCAPS) for tires, including:   - Light passenger car 205/60R15   - Mid-size passenger car 235/45R18   - Performance car 225/40R19   - SUV 265/50R20   - Light truck 275/65R18   - Commercial truck 295/75R22.5

## Brake Type - Virtual vehicle brakes

Disc|Drum | Mapped
These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Disc	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Brake model converts the brake cylinder   pressure into a braking force.
Drum	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Brake model converts the applied force and   brake geometry into a net braking torque.
Mapped	$\boldsymbol{\imath}$	$\boldsymbol{\checkmark}$	Brake model is a function of the wheel speed   and applied brake pressure.

## Brake Control - Brake control

Bang Bang ABS|Open Loop|Five-State ABS
These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Bang Bang ABS	$\checkmark$	$\checkmark$	Anti-lock braking system (ABS) feedback controller that switches between two states to regulate wheel slip. The bang-bang control minimizes the error between the actual slip and the desired slip. For the desired slip, the controller uses the slip value at which the mu-slip curve reaches a peak value. This desired slip value is optimal for minimum braking distance.
Open Loop	$\checkmark$	$\checkmark$	Open loop brake control. The controller sets the brake pressure command to a reference brake pressure based on the brake command.
Five-State ABS	$\checkmark$	$\checkmark$	Five-state ABS controller that uses logicswitching based on wheel deceleration and vehicle acceleration to control the braking pressure at each wheel.   Consider using five-state ABS control to prevent wheel lock-up, decrease braking distance, or maintain yaw stability during the maneuver. The default ABS parameters are set to work on roads that have a constant friction coefficient scaling factor of 0.6 .

## Steering System - Steering

Mapped | Kinematic | Dynamic
If you have Vehicle Dynamics Blockset and set Vehicle Model to Lateral Vehicle Dynamics, you can specify these parameters.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Mapped		$\boldsymbol{\checkmark}$	Mapped rack-and-pinion steering model.
Kinematic	$\boldsymbol{\checkmark}$	Kinematic model for ideal rack-and-pinion   steering. Gears convert the steering rotation   into linear motion.	
Dynamic		$\checkmark$	Dynamic model for ideal rack-and-pinion   steering. Gears convert the steering rotation   into linear motion.

## Suspension - Suspension

Kinematics and Compliance Independent Suspension|MacPherson Front Suspension Solid Axle Rear Suspension

If you have Vehicle Dynamics Blockset and set Vehicle Model to Lateral Vehicle Dynamics, you can specify these parameters.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Kinematics and   Compliance   Independent   Suspension		$\boldsymbol{\checkmark}$	Kinematics and compliance (K \& C) test   suspension characteristics measured from   simulated or actual laboratory suspension   tests.
MacPherson Front   Suspension Solid   Axle Rear   Suspension		$\boldsymbol{\checkmark}$	Independent MacPherson suspension for   multiple axles with multiple tracks per axle.

## Powertrain

## Engine - Virtual vehicle engine

## SI Mapped Engine|Simple Engine|CI Engine|CI Mapped Engine|SI Engine|CI Mapped Engine

These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description			
Simple Engine	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Simplified engine model using a maximum   torque verses engine speed table, two scalar   fuel mass properties, and one scalar engine   efficiency parameter to estimate engine   torque and fuel flow.   Selecting Simple Engine sets the Engine			
Control Unit parameter to Simple ECU.				$	$	Compression-ignition (CI) engine from
:---						
intake to the exhaust port.						


Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
SI Engine	$\checkmark$		Spark-ignition (SI) engine from intake to exhaust port.   Selecting SI Engine sets the Engine Control Unit parameter to SI Engine Controller.
SI Mapped Engine	$\checkmark$	$\checkmark$	Mapped SI engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables.   Selecting SI Mapped Engine sets the Engine Control Unit parameter to SI Engine Controller.
SI DL Engine	$\checkmark$		Deep learning SI engine.   Available if you have the Deep Learning Toolbox ${ }^{\mathrm{TM}}$ and Statistics and Machine Learning Toolbox ${ }^{\text {TM }}$ licenses. Use this setting to generate a dynamic deep learning SI engine model to use for powertrain control, diagnostic, and estimator algorithm design.   Selecting SI DL Engine sets the Engine Control Unit parameter to SI Engine Controller.

## Transmission - Virtual vehicle transmission

Ideal Fixed Gear Transmission|Automatic Transmission with Torque Converter| Automated Manual Transmission|No Transmission

These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Ideal Fixed Gear   Transmission	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Idealized fixed-gear transmission without a   clutch or synchronization. Use this setting to   model the overall gear ratio and power loss   when you do not need a detailed   transmission model.


Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Automated Manual   Transmission	$\boldsymbol{v}$		Ideal automated transmission (AMT). An   AMT is a manual transmission with   additional actuators and an electronic   control unit (ECU) to regulate clutch and   gear selection based on commands from a   controller. Specify the number of gears as an   integer vector with corresponding gear   ratios, inertias, viscous damping, and   efficiency factors. The clutch and   synchronization engagement rates are linear   and adjustable.
Automatic   Transmission with   Torque Converter	$\boldsymbol{v}$		Automatic transmission with a torque   converter.
No Transmission	$\boldsymbol{V}$		No transmission.

## Dependencies

To enable this parameter, set Vehicle Architecture to any of these:

- Conventional Vehicle
- Hybrid Electric Vehicle P0
- Hybrid Electric Vehicle P1
- Hybrid Electric Vehicle P2
- Hybrid Electric Vehicle P3
- Hybrid Electric Vehicle P4


## Transmission Control Unit - Virtual vehicle transmission control <br> Driver Pass Through| PRNDL Controller

These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Driver Pass   Through	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	No transmission control optimization.
PRNDL Controller	$\boldsymbol{\vee}$	$\boldsymbol{\checkmark}$	Controller that optimizes forward, reverse,   neutral, park, and N-speed gear shift   scheduling for fuel economy.

## Dependencies

To enable this parameter, set Vehicle Architecture to any of these:

- Conventional Vehicle
- Hybrid Electric Vehicle P0
- Hybrid Electric Vehicle P1
- Hybrid Electric Vehicle P2
- Hybrid Electric Vehicle P3
- Hybrid Electric Vehicle P4


## Drivetrain - Virtual vehicle drivetrain

One Actuator Input|Two Actuator Inputs AWD
These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
One Actuator Input	$\checkmark$	$\boldsymbol{\checkmark}$	Use One Actuator Input to configure the   drivetrain for:
• Front Wheel Drive   - Rear Wheel Drive   $-\quad$ All Wheel Drive			
Two Actuator   Inputs AWD	$\checkmark$		To enable this parameter, set Vehicle   Architecture to Hybrid Electric   Vehicle P4.

## Differential System - Virtual vehicle differential system

Open Differential|Active Differential|Limited Slip Differential
These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Open Differential	$\boldsymbol{\nu}$	$\boldsymbol{\nu}$	Differential as a planetary bevel gear train.   The block matches the driveshaft bevel gear   to the crown (ring) bevel gear. You can   specify:   - Carrier-to-driveshaft ratio   - Crown wheel location   - Viscous and damping coefficients for the   axles and carrier


Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Active Differential		$\checkmark$	Active differential that accounts for the power transfer from the transmission to the axles. The model implements the active differential as an open differential coupled to either a spur or a planetary differential gear set.
Limited Slip Differential	$\checkmark$	$\checkmark$	Differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:   - Carrier-to-driveshaft ratio   - Crown wheel location   - Viscous and damping coefficients for the axles and carrier   - Type of slip coupling

## Electrical System - Virtual vehicle electric machine and energy storage

Electrical System 1EM BEV Battery|Electrical System 1EM BEV Ideal Voltage Source|Electrical System 2EM HEV|Electrical System 1EM HEV

These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Electrical System Settings	Powertrain Blockset	Vehicle Dynamics Blockset	Vehicle Architecture	Description
Electrical System 1EM BEV Battery	$\checkmark$		Electric Vehicle	- Mapped motor and drive electronics operating in torque-control mode.   - Lithium ion battery model based off of discharge characteristics taken at different temperatures.
Electrical System 1EM BEV Ideal Voltage Source	$\checkmark$	$\checkmark$	Electric Vehicle	- Mapped motor and drive electronics operating in torque-control mode.   - Ideal voltage source battery model.


Electrical System Settings	Powertrain Blockset	Vehicle Dynamics Blockset	Vehicle Architecture	Description
Electrical System 2EM HEV	$\checkmark$		- Hybrid Electric Vehicle IPS   - Hybrid Electric Vehicle MM	- Two mapped motors and drive electronics operating in torque-control mode.   - Lithium ion battery model based off of discharge characteristics taken at different temperatures.
Electrical System 1EM HEV	$\checkmark$		- Hybrid Electric Vehicle P0   - Hybrid Electric Vehicle P1   - Hybrid Electric Vehicle P2   - Hybrid Electric Vehicle P3   - Hybrid Electric Vehicle P4	- Two mapped motors and drive electronics operating in torque-control mode.   - Lithium ion battery model with DC-DC conversion.

Use the Electrical Machine parameters to specify a mapped motor and drive electronics operating in torque-control mode.

Use the Energy Storage parameters to specify a datasheet battery model for a lithium-ion battery.

## Vehicle Control Unit - HEV and EV virtual vehicle control

EV 1EM|HEVIPS RuleBased|HEVMM RuleBased|HEVP0 Optimal|HEVP1 Optimal|HEVP2 Optimal|HEVP3 Optimal|HEVP4 Optimal

These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Vehicle   Architectu   re	Description
EV 1EM	$\boldsymbol{\checkmark}$	$\boldsymbol{\nu}$	Electric   Vehicle	lontrols the motor with torque   arbitration and power management.   Implements regenerative braking.
HEVIPS RuleBased	$\boldsymbol{\checkmark}$		Hybrid   Electric   Vehicle   IPS	Controls the motor, generator, and   engine through a set of rules and   decision logic implemented in   Stateflow.


Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Vehicle   Architectu   re	Description
HEVMM RuleBased	$\boldsymbol{\checkmark}$		Hybrid   Electric   Vehicle   MM	
HEVP0 Optimal	$\boldsymbol{\checkmark}$		Hybrid   Electric   Vehicle   P4	Implements an equivalent consumption   minimization strategy (ECMS) to   control the energy management of   hybrid electric vehicles (HEVs). The   strategy optimizes the torque split   between the engine and motor to   minimize energy consumption while   maintaining the battery state of charge
HEVP1 Optimal	$\boldsymbol{\checkmark}$		Hybrid   Electric   Vehicle   P4	
HEVP2 Optimal	$\boldsymbol{\checkmark}$		Hybrid   Electric   Vehicle   P4	
HEVP3 Optimal	$\boldsymbol{\checkmark}$		Hybrid   Electric   Vehicle   P4	
HEVP4 Optimal	$\boldsymbol{\checkmark}$		Hybrid   Electric	

## Driver - Virtual vehicle driver

Longitudinal Driver|Predictive Driver
If you have Vehicle Dynamics Blockset you can set Driver to Predictive Driver to track longitudinal velocity and a lateral reference displacement.

These parameters depend on the product license. This table summarizes the parameters available with Powertrain Blockset or Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Longitudinal   Driver	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Implements a longitudinal speed-tracking   controller.
Predictive Driver		$\boldsymbol{\checkmark}$	Track longitudinal velocity and a lateral   reference displacement.   Available when you set Vehicle Model to   Lateral Vehicle Dynamics.

## Environment - Virtual vehicle environment

Standard Ambient

The parameter setting Standard Ambient implements an ambient environment model.

## Programmatic Use

Entering the command virtualVehicleComposer opens a new session of the app, enabling you to configure, build, and analyze your virtual vehicle.

## See Also

## Topics

"Get Started with the Virtual Vehicle Composer"
"Simulation Data Inspector"
"How 3D Simulation for Vehicle Dynamics Blockset Works" (Vehicle Dynamics Blockset)

Introduced in R2022a


[^0]:    scalar

